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1931: Godel (later joined by Turing, Chaitin et al)
terminates the search of the “Vienna Circle” (Hilbert, Frege et al)
for an absolute, consistent & complete, mechanical formal logic

He formally proves that truth and provability are distinct

Then Godel raised the “final question”:

“Does our physical and biochemical
substratum permit a mechanical
one-to-one interpretation of all the
functions of life and of the mind ?”




Manifestations of the Uncomputable.

“All Cretans are liars, said

Challenge to | Epimenides the Cretan”
conventional “A: This statement (A) is false”
frameworks: Kurt Godel destroys Positivism:
“There are always Undecidable - ' .
Propositions in any formal Logic” Alan Turl_ng, The Haltmg_ Problem
] Is undecidable: No algorithm can
p?rad_oxmal “Proof Does Not Lead to Truth tell whether a computer program
S|tuat|o_ns, Truth Leads to Proof’ & an input, will halt, or run forever.
anomalies ...
UNRAVELLING
COMPLEXITY
Challenge: Every halting probability, Chaitin’s Q, is a normal and
broaden the transcendental real number that is non-computable,
concept of which means there cannot be any algorithm to compute its digits.

computation ‘There are definable numbers that are uncomputable’



https://en.wikipedia.org/wiki/Normal_number
https://en.wikipedia.org/wiki/Transcendental_number
https://en.wikipedia.org/wiki/Algorithm

Manifestations of Uncomputable: Gédel

“A: This statement (A) is false”
Arithmetizing Meta-mathematics:

Constant sign Giidel number Usual Meaning
o 1 not
v 2 or
0 ] 3 if..then...
3 /A there isan...
= “«r 5 equals
0 “« 6 zero
S 7 the successor of
( 8 punctuation mark
) 9 punctuation mark
: 10 punctuation mark
+ 1 plus
X 12 times

Godel numbering.

0=0— 26%35x5"
G(0=0) = 243, 000, 000.

G(2+2=5) = 5344390000

X,Y¥,Z ... etc, map onto prime numbers > 12
(x—13, y—17, z —19, ... eto).

— T T &
Enc{:ﬂrl,ﬂ:g,mg,...jmﬂ) =271 .37 -5 -y

L

51 =00000000000...
s =11111111111...
s3 =01010101010...
5, =10101010101...
55 =11010110101...
56 =00110110110...
s> =10001000100...
s =00110011001...
s =11001100110...
.5‘1(321101]10(}][]]...

s =10111010011...

The set of
Real numbers,

R /s
uncountable

Cantor’s
diagonal
argument

Provability Function P(¥) :
if F if G-valid => P(F) is true

Negation function Not(*):

Not(f) = ~f



Manifestations of Uncomputable: Gédel

“A: This statement (A) is false” Input Value
Arithmetizing Meta-mathematics: 4 Fatiction =1 | x=2 | %=3 | x=a x=g
. . _ 1| F,(x) =X 1 2 3 4
[“This statement is false”, is false] |
2 F,(x) = 2x 2 4 6 8
‘False’: this statement is not provable 3| F () =x | 1 4 | B 16
in Principia Mathematica.. 4 F,(x) = 2%’ 2 8 18 32

g | F(x) = Not(P(F (x)) G(QF Not(P(Fg(g)lD

Statement Fg(g) is not provable in Principia Mathematica.
or ...
This statement is not provable in Principia Mathematica.
or ...

[“This statement is false”, is false]




Manifestations of the Uncomputable: Turing:

stops:

Proof by contradiction ...

Assume there is a program, HM(P,1) ,a ‘Halting Machine’, that
can decide if another program P with input | stops or not, and

HM (P, 1)

/N

Yes (if the program HALT)  No ( if the program does NOT HALT)

From this make IM the Inverting Machine’

IM (P)

AN

ifHM (P, P)==Yes  ifHM (P.P)==No

L1
(oomd - (o )

and feedback it to itself
IM(IM)

then HM(IM,IM) cannot stop
... contradiction!

Therefore, no such HM exists

...QED

Alan Turing, The Halting Problem
Is undecidable: No algorithm can
tell whether a computer program

& an input, will halt, or run forever.

HM ( IM, IM ) == Yes(HALT) HM ( IM, IM ) == No (NOT HALT)

|

HALT
Loop forever ;
It will never halt
because of the above

not halting condition




Manifestations of the Uncomputable Chaitin

QU = Z 2—|p|

p halts

Challenge:

broaden the
concept of

Computation Chaitin constant is simultaneously computably enumerable

(the limit of a computable, increasing, converging sequence of rationals),
and algorithmically random
(its binary expansion is an algorithmic random sequence), hence uncomputable.

Math isn't the art

of answering
mathematical
questions,

it is the art of asking
the right questions

omputable’ UNRAVELLING
) COMPLEXITY

‘There are Qefinable numbers that are unc

Reals

i Definable g
Computable
q e Algebraic
The real goal of Ak 0O Sloe [ R
. . . \Q ("9\ \\-\' ‘ o=,
mathematics is to v % [P @Aﬂ 25 (S ‘
obtain insight, & -
A ’

. \
not just proofs. Every halting probability, Chaitin’s Q, is a normal, transcendental

real number that is non-computable,
which means there cannot be any algorithm to compute its digits.



https://en.wikipedia.org/wiki/Normal_number
https://en.wikipedia.org/wiki/Transcendental_number
https://en.wikipedia.org/wiki/Algorithm

Manifestations of the Uncomputable Chaitin:

.- . . (& Reals
Chaitin constant algorithmically random g sema—
(its binary expansion is an algorithmic random ( ) Computae )
sequence), hence uncomputable. c{\ 7 b
No algorithm can be constructed to compute it. Q. Q e[ corsnane

: <5 Be .
b2
=y i 2.5
c N o [%
. L L \ ;/)}
/ 4 4 4 4 4 4 4 \ ( Oy = 2—Ipl \
2 _ 242 _ 2422 4= U E
TT1IT3Ts T Te T
p halts
— % 1 — 1 1 - - - - - -
Tl I+ s+t 3 T this is algorithmically random: Its first n-bits
. cannot be compressed in an algorithm shorter
these are computable, many (formulas) than n-bits.
algorithms can compress their information. The shortest program to output the first n bits of Q must be of size at least
\ U \&

— O(1). Where O(1) a prefix depending on the formal scheme, the
nguage of these programs that halt among all those of length at most n.

‘There exist definable numbers that are uncomputable’


https://en.wikipedia.org/wiki/Algorithm

w3(U) B

B

T e
1] II!'_. .J.g"{a )

IFS {[0, 1)*; w, wq, w3}

wy(z,y) = (0.5z,0.5y)
we(z,y) = (0.5 + 0.5, 0.5y)
ws(z,y) = (0.5z, 0.5y + 0.5).

Wiy (Wia (- - (Wi (U)) - - .))

A= (5.

n=1

Undecidable & Uncomputable Problems
in Fractal Geometry: Formally Proven (Dube, 1993)

Whether the attractor of a given IFS intersects
with a line segment is undecidable.

Whether a given IFS is totally
disconnected is also undecidable.

Strategy: use symbolic dynamics to associate
trajectories to symbol sequences (i.e symbolic
dynamics, or cellular automata)

Ask the guestion as a question for symbol

sequences comparison

Example: reduce the problem to a tiling or
“(Emil) Post Correspondence Problem”, PCP.

b | [ a ca |

ca_ _ab a

abc

c:

Arrange the dominoes in such a way that
the string produced by the denominators &
the string produced by the numerators

are the same.




more uncomputable things in fractals ...

/z|—>pz:—|—zzz P \

o

Y
=g % %Lmterior
Vh+1 /{// \\ |
= ' i L -' %
2 \\ / -~ exterior
A quadratic golden mean Siegel disk
\ with its Jordan curve fractal boundary

There exist quadratic polynomials with Siegel disks whose Julia sets are
not computable

There is no algorithm that can compute arbitrarily good approximations
of these Julia sets.

The conformal radius of a quadratic Siegel disk varies continuously with
respect to the Hausdorff distance on Julia sets.

However, small changes in parameters can lead to an "implosion” where
the inner radius of the Siegel disk collapses to zero.




Newton’s Fractal: f(z) = 2% —1







Randomness in IFS. The Chaos Game:
Start tat a random point P1 within the triangle.

Choose one of the three corners of the triangle at random
Place P2 in the middle between point P1 the corner point.
Repeat. The result is the Sierpinski triangle fractal.

|.w: a | b | c | d

;_.fu | 0 0 0016
fj | 0.85 | 0.04 | =0.04 | 0.85 |
_h | 0.20 | -0.26 | 0.23 | 0.22 |
;-f4 -0.15 0.28| 0.26 0.24

w={1,2,3,4} is a random sequence. This is Barnsley’s fern




We can use randomness
to expand our algorithmic
(computational) capabilities.

We can imitate natural information
processes (biomimesis).

We can use Chaos constructively.

We can propose and simulate
non-conventional computation
(Nnets, reservoir computing etc.).

We can base decision making &
perception on an expanded logic.




1931: Godel (later joined by Turing, Chaitin et al)
terminates the search of the “Vienna Circle” (Hilbert, Frege et al)
for an absolute, consistent & complete, mechanical formal logic

He formally proves that truth and provability are distinct

Then Godel raised the “final question”:

“Does our physical and biochemical
substratum permit a mechanical
one-to-one interpretation of all the
functions of life and of the mind ?”




J.S. Nicolis & I. Tsuda

“The Magical Number 7+2 Revisited”

NEUROSCIENCE, Fourth Edition, Figure 20.1

Biological
Information
Processing

Artificial
Information
Processing

Pr(U > u) = {i_ﬂ

Levy Flight
[Fractal, NL-diffusion]

Scanning
[Linear-sweep]



John S. Nicolis Ichiro Tsuda

“The smallest biological
information processor is
the enzyme; the biggest
is the (human) brain.
They are separated by
nine orders of magnitude.
Yet their complexity is
comparable. ...” (1)

John S. Nicolis (2007)

Chaos & Biological Information Processing

Chaos and Complexity are the “sine qua non”

ingredients for the generation and processing
of biological information and communication.

A reliable biological information processor must
allow for chaos.

Biological information processing spans many

orders of magnitude (QM?)...

It has context, meaning, depth and
HISTORICITY (chaotic itinerancy).

Biological Information Processing is more than
mechanical.

It goes beyond the paradigm of Turing.

Healthy Brains (hearts etc) MUST have chaotic
components.




Macroscopic Level e o

(brain & brain regions) J—=. N [ L
EEG chaos-order transitions P . L g
Chaotic Attractors from EEG “ N Ponears (s AT

Walter J. Freeman (UCB)

Norton & Stark, Science 1971 also Agnes Babloyantz (ULB)
& many many others

Spatio-Temporal Patterns ... etc

Microscopic Level

(neurons and small group of neurons)

The more realistic/complex the model

the more allowing for chaos. Novel phenomena,
blue-sky catastrophe and spike trains

Andrey Shilnikov et al

Mesoscopic Level

(communities of neurons and
groups of communities of neurons)
Contemporary challenge, new concepts:
chimera-states, coarse-graining,
Non-local synchronization




JS. Nicolis & I. Tsuda

~ 80’s - 90’s

MATHEMATICAL DESCRIPTION OF BRAIN DYNAMICS 217

basin-set of impinging messages

strange

attractor strange

(memory) strange attractor
attractor (memory)

fractal-basin (memory) fractal-basin
boundary boundary

Figure 2 Skefch of a cognitive channel working after the dynamics of chaotic
itinerancy (see text); within each attractor a 'micro’-intermittency may go on as
well (as, for example, in the Lorentz system).

1, = relaxation time on an attractor.

1, = residence time before the interruption of the thalamo-cortical pacemaker.
t,) = holding time, after the interruption of the thalamo-cortical pacemaker.
1:,,: = transient time belween allractors after leaving altractor /.

The thalamo-cortical pacemaker is responsible for the jumpings among the co-
existing memories-attractors (a multifractal-inhomogeneous attractor). The
jumpings can be viewed as chaolic itinerancy. The processor is partitioning a set



J.8. NICOLIS AND 1 TSUDA

observation W/
D !

L____| categorisation

“... To observe you need a priori categories,
but to form categories you need observations...”

Emergent, Non-linear Recurrence:

. Explore, generate information: DATA
~ y excitatory dynamics, (+) feedback,
Chaos: positive Lyapunov exponents

Categorize, retain information: HYPOTHESES
inhibitory dynamics, (-) feedback,
Stability: negative Lyapunov exponents

Az



Bifurcation & Symmetry Breaking
Superposition & Collapse

2 \ 1"' . [/
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Bifurcations: Superposition & ‘Collapse’ in Cognition

=y
X
Gy) - | b | i
/ / Q |11b> — CE|0>
(a) (a) 3
/8 S *‘g |
) =al®+81)| | >~ V|| e
(b,) |
o + 162 = 1 a
A
) = BI1)



Universal and Efficient Learning

T / i \

o
ok

|
L

|||||||

Overfitting X v §mpossible®
4 r Learning

Qrder Critical _Chags
Order_(Llnear): o L ool s o Inverse Bayesian inference
Negative Feedback > Positive Feedback in swarming behaviour of
Real Soldier-Crab decision making g soldier crabs

monitoring & data = = ————— = =
Yukio-Pegio Gunji', Hisashi Murakami®, Takenori

Tomaru? and Vasileios Basios*

Criticality (non-linear):
Negative Feedback = Positive Feedback

Chaos (non-linear):
Negative Feedback < Positive Feedback




YUuo Cno

Raed Tins

Typoglycemia

“Raeding Wrods With Jubmied Lettres There Is a Cost”

Rayner, K. et al, Psychological Science, 17(3), 192-193, (2006)



MATHEMATICAL DESCRIPTION OF BRAIN DYNAMICS 217

basin-set of impinging messages
sub-basim®
(I1I)
o Outside
5 .
sid
— Inside
TF Th‘
= & </
Ti
strange
attractor strange >
(memory) strange attractor
attractor (memory)
fractal-basin (memory) fractal-basin
boundary boundary

Figure 2 Sketch of a cognitive channel working after the dynamics of chaotic
itinerancy (see text); within each attractor a 'micro’-intermittency may go on as
well (as, for example, in the Lorentz system).

t, = relaxation time on an attractor.

T, = residence time before the interruption of the thalamo-cortical pacemaker.
1, = holding time, after the interruption of the thalamo-cortical pacemaker.
1:,3: = transient time between attractors after leaving altractor /.

The thalamo-cortical pacemaker is responsible for the jumpings among the co-
existing memories-attractors (a multifractal-inhomogeneous attractor). The
jumpings can be viewed as chaolic itinerancy. The processor is partitioning a set






Extended Bayesian Inference

(questioning assumptions)



P(E)

Probability of this specific evidence,
E, given this hypothesis H, times the
overall probability of this hypothesis

Probability of hypothesis H . ,
(called the prior belief)

given evidence E
(called the posterior belief)

P(E) P(E)

/

Total probability of
encountering this evidence

Probability evidence E and
hypothesis H would occur together

/

P(E|H)P(H) + P(E|H")P(H’)

/

which is a sum over all the hypotheses (H, H')
that are compatible with the evidence




Bayesian Inference

“How often have | said to you that when you have excluded the impossible,
whatever remains, however improbable, must be the truth”

— Sherlock Holmes

“How often have I said to you that when all other 6 yield P(x|0) of O, whatever
remains, however low its P(#), must have P(f8|x) = 177

— Sherlock Holmes, paraphrased

in Kruschke, J. K., & Liddell, T. (2005)

“Bayesian data analysis for newcomers”’




data / measurements

p(y|x) generative model model inversion
forward model P(xh’)

X
hidden (latent) quantity of interest

Prior belief Posterior belief Likelihood
internal model- updated belief: data:
prediction perception sensory input

Unprecise Posterior belief
prior belief dominated by the sensory input

Apprehension = Bayes Inference

= A2 A

Bl = climbing up ONE mountain top
Friston’s Free Energy Minimization
(minimizing surprise : iteration)

F = Energy - Entropy = —(ln p(s.n))_+{lnq(m)),

Action to minimise a bound on surprise Perception to optimise the bound



What if the mountain has multiple peaks ?... (Judgement)
| BIB = Bayesian & Inverse Bayesian Inference

Apprehension = Bayes Inference

Data

=

B Judgment = Inverse Bayes Inference

Recalled
Memory

Superimposed Non - algorithmic
Landscape Jump

_l‘,.ModeJ

_Posterior probability

Prior probabilities

" initial state

complexity, Semantic-—-- = MI.E_ANWG

(multiple models) ...~

ANFORMATION

,t';om plexity, algorithmic
S (single model)

\ creafivity= swap of model




Likelihood

(=) (data) . [*5
_ v _
I Bayes’ Theorem N
] ) i AR
] I ~/ Posteriory,
(b) Likelihood
(data) .~
~ | il -
P N |3 Y
—w,

~

Converse Bayes' Theorem

Posteriory




Bayesian Inference
Contracts Probability Space

Inverse Bayesian Inference
Expands Probability Space

Posterior

/N

e
Fy 1 l\\ B .\‘\. \ \
E | .\ Posterior
\ ,.-'I //7'-\, \ ________\.\‘\\‘;\‘ / \

Likelihood

\h \H— — / N\

.-'I .//. /
b o/ -
-
T ~ /
n L
[ 3 4 T I
‘e

P(d[h) > P(dJh:) > P(d[hs)P(d|hs) ...> P(d|hs)




A quantum state of system

Sir Roger Penrose (2016, pg 143)

Figure 2-8: The way that the quantum-theoretic world appears to behave, with
stretches of deterministic U-evolution, punctuated by moments of probabilistic
R-action, each of which restores some element of classicality.



Non-Boolean Logic
&
Quantum Cognition

(the logics of objects and processes)



Apprehension & Judgement in Necker Cube Dynamics

$ ¢

* Non-Markovian with short term memory

 Contextual

* Violates temporal-Bell Inequalities
[CHSH and Legget-Garg ineq.]

Fortunato-Tito Arecchi

FT.Arecchi,A.Farini, N.Megna-

a)

b)

,_I l_l ﬂ Q=t1
tll li: l:I.'l -----
Cr 4 4 (e =
Ca O 4 4 Cuzﬁer(rJQr(rz}
Ciz * o * =
N
K= D (QUE Q)+ QUL Q) — QU )QUE)
2.5+
2.0: §
1.5
1.0 - i § i
S os
S 0.0 §
* 0.5
-1.0] L4
181 CS . . . . ,
10 1.5 20 25 30 3.5

ISI (s)



QQ : Quantum Question : Order Effects

AB  BA
flatx) = g(f(x) Is Clinton honest? 50%
|Is Gore honest? 68%
No-Commutative
Contextual
Complementary Is Gore honest? 60%

Is Clinton honest? 57%

-William James
(~1860)

-Niels Bohr
-Heisenberg
(~1930)

Moore (2002), Busemeyer and Wang (2009)



2
=
g 3
@ Z‘
Z o\
o)

Base A: Clinton-Gore
Base B: Gore-Clinton

Bases’ angle = Interference factor

v

State Vector

(ray)

P=WV*y=|W|2
QK — Hilbert Space




Quantum-like Logic

» Classical Logic (Boolean Logic): The ‘distributive law’ holds COMMUTATIVE OPERATIONS
‘Aand ( B or C)’is equivalent to ‘(A and B) or (A and C)’.

* Quantum Logic: The ‘distributive law’ is broken! NON-COMMUTATIVE OPERATIONS
‘Aand (B or C)’is NOT equivalent to ‘(A and B) or (A and C)".

Once the distributive law is not observed the three tenets of classical (Aristotelian, Boolean)
logic also cannot hold unconditionally.

The law of identity: 'Whatever is, is.",

The law of contradiction: ‘Nothing can both be and not be."'

The law of excluded middle: 'Everything must either be or not be.".

So ... what is reasonable in logic?



Eggs .AND. (Bacon .OR. Sausages) = (Eggs .AND. Bacon) .OR. (Eggs .AND. Sausages)

P(bacon)+(1-P)(sausages)

*KNOWING, DOING and BEING”, by Chris Clarke
Imprint Academic (2013)




A quantum state of system

Sir Roger Penrose (2016, pg 143)

Figure 2-8: The way that the quantum-theoretic world appears to behave, with
stretches of deterministic U-evolution, punctuated by moments of probabilistic
R-action, each of which restores some element of classicality.



Foulis’ Firefly in a box

S front
N=— g
\ J back
“blip”
left right No “blip”

The Logic of Events

¢ “{Lrn}  {fba)

/1N 1N

rn} (Lo} C{Lr}  {EB} T {bm}  {fn)

] f ] ¥y | Bl 1™
{1} WL g g {b}

N

Figure 2




The Guppy Effect as Interference & Concepts in QQ

Q1:

What is a good example of a Pet?

Q2:

What is a good example of a Fish?

Q1 .AND. Q2:
What is a good example of a Pet and a Fish?




‘deepal.org/publication/the-guppy-effect-as-interference’ (Aerts et al)

Q1 Q2
a good example a good example a ng.ﬁglgngzle
of appliance? of furniture? g P

of furniture and appliance?

Visualization of interference probabilities, standard QM formalism:
Hilbert Space: { |A> appliance |B> furniture}, (x,y) labels of objects of given table

sla(@,y) + vp(z,y)? = 3(1alz,y)* + [Ya(@,y)*) + [Yalz, y)¢p(r,y)| cos (2, y)



iede |ck Aerts
VUB

Andrei Khrenikov
LNU

Concepts are “Quantum-like” Entities

(  Quantum
~  Models of
Cognition and

Decision

“... perceptions & concepts, like objects
seem to loose their rigid boundaries ...

* Entangled
Complementary
Inter-penetrating
Super-positioned
Context Dependent ...

Our mind works with Quantum Probabilities (Processes)
rather than Classical Probabilities (Objects)

/

/




Biological Information Processing
Extended Bayesian Inference

(putting it all together from information to action)



ubiquitous ambiguity

P s [ thank there's a
' SPY AMOng U5, .




An example of BIB & Q-Logic
e.g. a Universe of Discourse:

Data + Relations
(impinging signals + a priori categories)

Choosing a representative (... roughly speaking) CAT |DOG

Symmetry: if an individual cat is not like a dog,
an individual dog is not like a cat

Locality: two neighbours have
same representative.




I
I

Rough-Sets approximation:

RX =RX

RX #RX

—— | | Rx Z
X RY 5
/ ;}h T T Boundarvy
\J N
"\.___________d___._--"'”-r
I M
TTpper Lower

approximation approzxitmation

then, X is definable (the boundary set is empty)
then X is Rough with respect to R.

ACCURACY := Cardinality(Lower)/ Cardinality (Upper)




Formal Scheme:
Y.-P. Guniji et al. / BioSystems 141 (2016) 55-66

b, b, by b, b b, b, by by bg
1;‘345/1234\

N | /o ~symmetry
b, b \B b, b b b"éx b
Qutside Inside ! 2 3 4 = \\1\ > by b /

object = .
Rty representation

e
bt bz bs b_q_ I‘JE
One-to-one relation
Between outside and )
inside (illusion) by by by by by




g: A: - g(A) Inhibitory network construction induces a rough set
approximation K: (K*(X) , K«(X)) Y.-P. Guniji, VB et al
Biosystems,

141 (2016) 55-66

A: the set of “outside”
“impinging stimuli”

f: A= f(A) induces a rough set representation R: (R*(X) , R*(X))

Apprehension can be implemented by (forward) Bayes inference
(Arecchi, 2015): P(h*) = P(h|d) = P(h)P(d|h)/P(d),

P(h): a priori probability of hypothesis , h, d is data,

P(d|h): a priori probability that d results from h,

P(d): probability we observe data d, and

P(h*). a posteriori probability among a priori Hypothesis.

h is replaced by equivalence relation,

R derived by a particular representation (map, “f”),

P(dl|h) is replaced by R*(X), and P(h|d) = P(h*) is replaced by R+(X).

Therefore: Bayesian inference maps to the process of computing R*(X) from R+(X)
(i.e. from a priori to a posteriori)




123488 Galecn 1 Nk peints

: R e Collecting Fixed
(I Emmm points, sets X, for all

- | ToEE ] f,9 (RK)
AR _ compositions:
. B
L i (algorithm based on
- T row-column
e D e rearrangement)

R*K*(X) = X R*K+(X) = ... and can go for larger and larger systems!
— K*R+(X) = X

K*R+(X) = X
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Play it once more... with Restricted Boltzmann Machines:
(Bayesian-Inverse Bayesian Inference beats simple Bayesian Inference!)
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Fig. 10. (A) Distribution of the joint probability P{d, h) plotted against data, d and hypotheses, h for a steady state (= 100). (B) Matrix expression for the joint probability
where a matrix congisting of red and white cells is a diagonal matrix area and a matrix consisting of orange cells is a noisy area. Arrows represent probabilistic transition from
an attractor to another attractor. {C) Diagonal matrix is obtained by the exchange of rows or columns. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Hasse Diagrams of the matrix of equivalence

gualify this logic as a non-Boolean
“multi channel” -« ortho-modular Quantum-Logic




Real Soldier-Crab decision making
monitoring & data

Figure 3. Snapshots of the real soldier crabs, Mictyris guinotae, wandering in a tank under the laboratory condition. An
individual is represented by a circle accompanied by its previous trajectory. (Online version in colour.)



Modified Vicsek Model f N (\ /1)\ %)\

. . . 5 \/
With BIB as internal steering = QQM\\ HW///? :

BIB = Bayesian and Inverse Bayesian QQJ (x Q )

u ¥

I n fe re n C e P ro c e S S Figure 5. Schematic diagram of data and hypothesis adopted by a time series of real soldier crabs. (Unline version in colour.)

(et) (b)

Figure10. Snapshots of the swarm model based on BIB inference. Swarming phase (2) and dispersing phase (b). (Online version



Bayesian inference

A
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BIB & Extended Bayesian Inference code for Levy flight

by S. Shinohara:

https://zenodo.org/record/5018080

Simulation test data & source files in C ++ (uses Qt v5 library)



https://zenodo.org/record/5018080
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Inverse Bayesian inference
in swarming behaviour of
soldier crabs

Yukio-Pegio Gunji‘, Hisashi Murakami?, Takenori

Tomaru?® and Vasileios Basios*

Scores of Prediction
of the next move

Bayesian

VS

Bayesian Inverse-Bayesian
Inferences

individual crab (up)
average of a collective (down)



A Apprehension = Bayes Inference

o=

B Judgment = Inverse Baves Inference

Recalled
Memory

Superimposed Non - algorithmic
Landscape Jump




Newton’s Fractal: f(z) = 2% —1
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We can use randomness
to expand our algorithmic
(computational) capabilities.

We can imitate natural information
processes (biomimesis).

We can use Chaos constructively.

We can propose and simulate
non-conventional computation
(Nnets, reservoir computing etc.).

We can base decision making &
perception on an expanded logic.




... to be continued
Thank You!

(for your patience & attention)
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