From Network Neuroscience to Network Neurology:

25 years of development and innovation
Anastasios (Tassos) Bezerianos Barrow Neurological Institute, Phoenix, AZ, USA, and
Andrei Dragomir The N.1 Institute for Health, NUS, Singapore SG

The seminar will begin with an overview of the historical development of network neuroscience,
which emerged from the mathematical formulation of network models using graph theory and its
applications to the neural networks of the brain already known from anatomy and physiology.
The results of mathematical analyses based on experimental data derived from modern brain
Imaging techniques helped to understand the importance of not only the existence of neurons in
the brain, but also that the communication between them. In this way, we can monitor rapid
phenomena such as cognition or the brain's response to external stimuli, and slow phenomena
such as the progression of Alzheimer's disease, schizophrenia, depression, etc. In the second
part, the speaker will present the important discoveries made with the application of connectivity
analysis in the healthy brain and mental disorders. To name a few, (1) the discovery that brain
plasticity Is a matter of hours, not days, (2) the visualization of brain conditioning to perform
repetitive tasks, (3) advances in the study of fatigue mechanisms, and (4) the brain response in
autonomous driving.

Summer School and Conference on Dynamical Systems and Complexity
AUTh camping of Kalandra Chalkidiki, 28/8 — 6/9/2024
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Graph Theory and Applications to the Brain
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Introduction to Brain Networks

Macroscopic brain
areas

Neuron Level

First microscopic study by Ramon that evolved neuron theory

"Schematic representation of muitiscale hierarchical organization in brain

« Seminal neuron theory, established by Ramon y Cajal’s microscopic studies first showed the complex
branching process in neurons and set the scene for graph theory analysis in neuroscience

« The microscale analysis was extended to the macroscopic level where the white matter connections and
functional interactions were analyzed between the cortical brain regions

* Network theory provides techniques for analyzing these structural and functional interaction in the brain, along

with their associated dynamics
Fornito et al., Academic Press, 2016
Park etal., Science, 2013



Complex Networks (Mathematics Applied Sciences)
for Brain Networks (Neuroscience e and Neurology)

The Challenge: A system of Billions of Nodes ( ~200 cells) with Trilions (~100) of edges (synapses)
(the Brain) must be formulated as system of limited number of equations and degrees of freedom.

Biological Innovations by The Dimentionality Reduction: (1) Synchrony of oscillation (2) Spatiotemporal processes

Scientific Innovations by Graph Theory and Signal Processing

Technological Innovations: New Imaging Techniques (MRI, fMRi, LFP, and High Density EEG)



Brain at Multiple Scales | o |
Intermediate structure organization of normal brain network
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 The need of graph theory is due to a paradigm shift in brain function, which has been observed from localized populations of neurons to the
importance of connectivity between the brain regions (Bassett et al., 2006; Park et al., 2013)
» The brain networks is also a composite mixture of ‘random’, ‘regular’ and ‘scale-free’ networks



Brain at Multiple Scales Spatial
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Organization of brain networks in Spatial, Topological and Temporal scales

» The brain networks are fundamentally based on multiple scales: Spatial, Topological and Temporal scales (Betzel et al., 2017)
» Hence, for real-time effective tracking of cognitive states, an advanced framework incorporating multiple scales of brain network is essential

Cornelis, Nature, 2014
Betzel et al., Neurolmage, 2017



Brain Signals

Functional Magnetic
Resonance Imaging (fMRI)
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temporal resolution (log sec)
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Schematicillustration of the ranges of spatial and temporal resolution of various

. . . . . . . . Bin He et al., 2008
noninvasive imaging techniques and invasive experimental techniques



Types of Imaging Machines

Structural Network

Effective Network




Types of Connectivity Network .
yp Structural)/Network Functional Network Effective Network

Isotropic resolutions as fine as voxel 1 mm?3to 3 mm?3 Few mm (HREEG) to
(300 - 500Kneurons several cm (16-32sensors)
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Electroencephalography (EEG)

« High Temporal Resolution : i
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EEG Devices

From Lab to real applications:
Wired - wireless (Bluetooth) devices
Wet (with gel) - dry electrodes

Many - few electrodes at specific locations

g.Tec Neuroelectrics Advanced Brain Monitoring

(Unicorn) (Enobio) (B-Alert)

OpenBCl Brain Product Compumedic Neuroscan

":b

(Ultracortex "Mark IV") (LiveAmp) (Quik-Cap — SynAmps)

Emotiv InteraXon NeuroSky

)

(EPOC) (Muse Headband) (MindWave)
EEGSmart Nihon Kohden Cognixion

(Touch) (vital EEG) (Cognixion ONE)

Nuraini et al., 2021



EEG signal analysis

Univariate Measures —
Magnitude, Power, etc —
Single regions

T

Bivariate Measures —
Functional Connectivity —
Two regions

alpha power
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Source Localization

Source localization provides brain functional
connectivity at the cortical source level from the
sensor level

Provides higher spatial resolution to the EEG data
and reduces the volume conduction effect

Additional advantage from fMRI is the higher time
resolution present in EEG

Data required for Source localization (e-LORETTA)

The scalp-recorded EEG signals

3-D position of the electrodes

The head model, containing electrical and
geometrical characteristics of the head

The source model containing location and orientation
of dipole sources

Volume conduction effect

Data recording and preprocessing Reconstruction of EEG sources

Regional time series

Dense-EEG (256 channels)
- |\ Head model
\\", .
Patients £ e
and/or VA ) e
healthy *
subjects Inverse solution ©
NS 2 _ 1
L/ /% o\ Il TS
Paradigm ¥, A g\“‘ T
Task-free (resting state) / Task- === <ih\v
M 7 Time
Dipole orientation
and location C)

Functional connectivity

sBuidnoo jeansiels

68 ROIs

Sensor space Source space R

Steps involved in reconstruction of EEG sources from the sensor level

Hassan et al., [IEEE Sig. Proc., 2018



EEG - Frequency Analysis

Gamma (30-70 Hz)

Beta (15-30 Hz)
W%;W"““‘Alpha (8-13 H2)
W*WA-Theta (35‘7 HZ)

o \,\/ Delta (0.5-3.5 H2)
10V WWA ['MERP

V\j] (Basar et al,

Important information about brain signals is
encoded in frequency domain

Common frequency bands:
Delta (8): 0.5 - 4 Hz

Theta (8): 4 -7 Hz

Alpha (a): 8 -12 Hz

Beta (B): 13 - 30 Hz
Gamma (y): 30 -70 Hz
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Graph theoretical analysis

Graph Theoretical Analysis

$

Multivariate analysis involves interactions among brain areas

Sensor nodes

EEG signals Adjacent matrix

i

N

Connectivity networks generation

 Interactions which hold the direction and strength of the information flow between brain areas (nodes).
» Usually via estimation of temporal covariance/correlation between different spatial sites.

e Better understanding of the organized behavior of cortical regions.

16
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Network metrics

An individual network measure may characterize one or several aspects of global and local brain connectivity.

modules hub nodes
modular structure betweenness centrality
modularity other centralities

X
WAL

‘
shortest path triangle motif degree
characteristic path length clustering coefficient anatomical motifs degree centrality
global efficiency transitivity functional motifs participation coefficient
closeness centrality degree distribution

|
va L :MZIEnEi#Enmm(LH)

Shortest Path Length

Schematic paradigm of graph
theoretical measurements (key
complex network measures in
Italics). These measures are
typically based on basic
properties of network
connectivity (in bold type)
(Rubinov, 2010).
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Brain network construction methods
Frequency domain

Granger Causality (GC): A time-series X;(t) is the cause of the second time-series X,(t) if the knowledge of the

previous values of X;(t) significantly improves the prediction of X,(t).

Two variavles (bivariate) model of order p (number of previous time points):

(X1 (t = j +ZA17 (J)Xa(t = j) + Er(2)

(X1 (t—j +ZAzz(j}Xz(f—j)+Ez(f)

j j=1
With Fourier thansform, we obtaln GC in frequency domain:

(f
o (F) = [Ho () = A;(‘f))

GC is not symmetrigc, i.e., X;(t) can cause X,(t) without X,(t) causing X;(t).

where H the transfer function H(f)= (

0

-1
A e —12 At j
T



Brain network construction methods
Frequency domain

Multivariate autoregressive model (MVAR) of order p for multi-channel time-series X(t)= [x;(t) ... xy(t)] -

P
X({t)=-> AX(t-7)+E(t)
With Fourier transform: -
X(1)=H(T)E(T)

We can estimate matrix S(f ):
S(f)=H(f)XH"(f)

where X the noise covariance matrix and * notes the complex conjugate.



Brain network construction methods
Frequency domain

 Directed Transfer Function ( DTF? the ration between influx from channel j to
channel i divided by the total influx to channel i:

DTF%;(f) = ‘Hij(f)(

Z:ﬂ‘ H im(f )(2

) Si(f)
. C f)= Ik
Coherence  Ci(f) S (f)S (f)

Ai(f)

* Partial Directed Coherence (PDC) PDC”(f):\/a’f(f)a (f)
J

* Generalized Partial Directed Coherence (GPDC) GPDCij(f)=\/N



Bivariate vs multivariate models

Simulations showing difference simulation scheme
between bi-variate and multi-variate
estimates of directionality

multivariate
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DTF: Dynamic patterns of EEG propagation

In video: dynamic patterns of EEG propagation
obtained by short time ffDTF during a Working
Memory Task.

Involvement of frontal and posterior parietal
regions in working memory tasks is observed in
accordance with imaging studies.

Mostly neighboring electrodes are involved and
occasionally long range connections.

—> Optimal organization of the brain networks for
metabolic energy saving and efficient wiring
includes modular structure with dense
connectivity inside the modules and more sparse
connections between modules

A. Brzezicka et al., Brain topography 2011.



Dynamic Functional Connectivity
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Current Challenges:
* Functional connections in human brain might fluctuate over time, which cannot be found from the standard approach
that relies on a static graph to represent functional connectivity.

Solution:
Dynamic Functional Connectivity (DFC) provides the solution to observe the fluctuations and dynamic reorganization of the
brain network over time. It allows to track the information flow and dynamic reconfiguration of the modular structure in the

brain. This provides a better understanding of the neural mechanisms both during rest and task based conditions.
Preti et al., Neurolmage, 2016

Ren et al., IEEE TNSRE, 2017
Racscett et al Pl OS Comb Rio 2013



Multilayer Network

Multilayer network allows to model multiple domains like
spatial, temporal and spectral, in an unified framework.
Two representation of multilayer network are mostly
studied:

 Tensorial Representation- Layers are stacked and
nodes are both connected at intra-layer and/or inter-
layer. Mostly used for dynamic functional connectivity
analysis.

* Supra-adjacency matrix- Flattened representation of
multilayer network where individual adjacency matrix

together forms the supra-adjacency matrix. It is T T T e T T
mostly used for within and cross frequency coupling. Tensorial Representation

Within layer

connectivity

) - Ren etal., IEEE TNSRE, 2017
Example of Multilayer Network Connectivity Brookes et al., Neurolmage, 2016



Part |l

Highlights of my research
(1) the discovery that brain plasticity is a matter of hours, not days,

(2) the visualization of brain conditioning to perform repetitive tasks,
(3) advances In the study of fatigue mechanisms, and

(4) the brain response Iin autonomous driving.
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ORIGINAL PAPER

Evaluation of Cortical Connectivity During Real and Imagined
Rhythmic Finger Tapping

Maria L. Stavrinou - Liviu Moraru - Laura Cimponeriu -
Stefania Della Penna - Anastasios Bezerianos
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Brain Topogr (2007) 19:137—145
DOI 10.1007/s10548-007-0020-7

ORIGINAL PAPER

Evaluation of Cortical Connectivity During Real and Imagined

Rhythmic Finger Tapping

Maria L. Stavrinou - Liviu Moraru - Laura Cimponeriu -
Stefania Della Penna - Anastasios Bezerianos

Remarkably, the matrices of phase synchronization indices
are similar for both real and imagined movement. The
significant  synchronization values identify beta range
synchronization between signals recorded at electrodes
FCZ, C5. CPZ and CI. The topographic map of inferred
functional connectivity 1s schematically displayed in
Fig. 6.

Fig. 6 Topographic map of inferred functional connectivity corre-
sponding to statistical significant synchrony



* TLDR: This study
adapted the

paradigm of finger

webbing, in which 0 "‘%‘w

4 fingers are
temporarily
webbed together,
hence modifying
their sensory
feedback, to
provide a unique

frame in which the

different
representational

changes occur and

shows how brain
reorganization
occurs over time

Cerebral Cortex September 2007;17:2134-2142
doi:10.1093/cercor/bhll120
Advance Access publication November 16, 2006

Temporal Dynamics of Plastic Changes in
Human Primary Somatosensory Cortex
after Finger Webbing using MEG sensors

Maria L. Stavrinoul’z, Stefania Della Penna1’5, Vittorio
Pizzella', Kathya Torquatil’ﬁ, Francesco Cianflone'?, Raffaella
Franciotti'~, Anastasios Bezerianos®, Gian Luca Romani'?

and Paolo Maria Rossini*>°
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Figure 3.  Dipole locations. ECD for D2 (red) and D5 (blue) projected onto the individual’s anatomical MRI for a representative subject through the experimental blocks of BO-B6.

Our results showed brain that plasticity between cortical sources
activated by electrical stimuli to the index and small finger 30 min after
webbing, followed by an increase lasting for about 2 h after webbing,
which was followed by a return toward baseline values.

Figure 2.  Description of polar BESA coordinates of an ECD (blue) on a represen-
tative subject’s anatomical MRI. Cartesian axes are also shown.
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Connectivity Analysis as a Novel Approach to
Motor Decoding for Prosthesis Control

Heather L. Benz, Huaijian Zhang, Anastasios Bezerianos, Senior Member, IEEE, Soumyadipta Acharya,
Nathan E. Crone, Xioaxiang Zheng, and Nitish V. Thakor, Fellow, IEEE

TLDR

This work introduces a new
feature set based on connectivity
and demonstrates its potential to
improve ECoG BMI accuracy, and
uses time-varying dynamic
Bayesian networks (TV-DBN) to
determine connectivity between E
coG channels in humans during a
motor task

Fig. 1. Grid of ECoG electrode locations in each of the four studied subjects.



Connectivity Algorithm

Time-varying dynamic Bayesian networks:

Based on determining conditional
probability P(¥, | X*_,)

Graph theory meets probability theory:
efficient computing.

Describe distribution of temporal ECoG
transitions as a linear model:

X, = AX,_ +e

A is the connectivity coefficient matrix. A,
is the connectivity weight from the ith to
the jth channel from time t—1 to time t.

TV-DBN from Song et al., Advances in Neural Information Processing Systems, 2009



Connectivity

(a)

TVDBN Connectivity Coefficients Between Channels
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Benz, et al., IEEE TNSRE, 2012



Normalized Joint Angle

Connectivity Decoding

30% for training ) 70% for testing

o N B2 O
I

o
] s Actual Joint Angle
-4 Subject A —— Predicted Joint Angle Prediction CC=0.8 ]
65 20 20 80 80 100 720 T40
Time (s)

Average Maximum Decoding Accuracy by
Subject (correlation coefficient, r)

Subject Spectral/LMP | TV-DBN GRNN

GRNN

Benz et al., IEEE TNSRE, 2012
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Self-Attentive Channel-Connectivity Capsule
Network for EEG-Based Driving Fatigue Detection

Chuangguan Chen, Zhouyu Ji, +3 authors Hongtao Wang -

Engineering, Computer Science

(a) Tempnral-Channel Attention Module

Published in IEEE transactions on neural...

26 July 2023 -

(b) Channel-Connectivity Attention Module
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Fig. 2. Simulated driving system and the employed scalp for the experiment. (a) Simulated driving system. (b) Experimental scenario. (c) Distribution of the electrodes used for the experiment and the subdivisions
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Real-time Smart Phone Workload Assessment




2. Mental Workload in flight simulation

» Studies of the mental workload are limited to well-controlled cognitive tasks using a 2D computer
screen.

* We investigated functional brain network alterations in a simulated flight experiment

* In the experiment, we used three mental workload levels and we compared the reorganization
pattern between computer screen (2D) and virtual reality (3D) interfaces (via the Oculus Rift
headset).




2A. Real-time Workload Assessment

= Simple and computationally efficient methods :
are required for real-time performance. 1
I i Phase 1

2 Second Window
15-Second Window

= We implemented a real-time workload
monitoring system in a VR-based realistic flight
simulator. The continuous flight scenario was
designed to induce workload from low to high
level in 3 phases.

= Ratio of power in theta band in 3 frontal
channels to alpha band in 4 parietal-occipital
channels is used as workload index.

IR
Brain Network
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Trusted Autonomous Systems (TAS)

O Advanced robotics and
autonomous systems = emerging
disruptive technologies which will
transform life, business and global

SRS A W : economy (McKinsey Global Institute

US DoD — Perdix drone swarm Waymo Google s seIf drlvmg car(2019) Report-2013)

2017

O TAS = projected market of USS 2tIn

by 2025
2050 °?
Human I\/Iachlne CoeX|stence
Saturday, 20 September, 2050  Firstpost signin Regist o & A a B

- rp wr MIT Technology Review - Discover What Matters Today. Get
EheNew orkTimes  [EEERARREORZAM i @)

Breakthroughs!

IETY MEDIA SOCIALMEDIA = ENTERTAINMENT =~ SPORTS = TECHNOLOGY = MOR

Convinced with wisdom of machines, Google
appoints a robot as CEO

006000

San Francisco. Google is going all automated. just as they want our lives to be. In a recent robotics convention Google
unced that they have appointed a new CEO - a robot named Meka.

WAYMO 2024



https://waymo.com/waymo-one-phoenix/
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