Fractal Geometry
and 1ts

applications

V. Drakopoulos

Department of Computer
Science and Biomedical
Informatics




.
Bibliography

- Barnsley M. F., Fractals everywhere, 3rd ed., Dover Publications, Inc., New York, 2012.

- Barnsley M. F., SuperFractals, Cambridge University Press, New York, 2006.

- Barnsley M. F. and Anson, L. F., The fractal transform, Jones and Bartlett Publishers, Inc, 1993.
- Barnsley M. F. and Hurd L. P., Fractal image compression, AK Peters, Wellesley, 1992.

- Barnsley M. F., Saupe D. and Vrscay E. R. (eds.), Fractals in multimedia, Springer-Verlag, New York,
2002.

- Beardon A. F., Iteration of rational functions, Springer-Verlag, New York, 1991.
- Carleson L. and Gamelin T., Complex dynamics, Springer-Verlag, New York, 1993.
- Crownover R. M., Introduction to fractals and chaos, Jones and Bartlett Publishers, Boston, 1995.

- Devaney R. L., An introduction to chaotic dynamical systems, 3rd ed., Addison-Wesley, Reading, MA,
2021.

- Encarnacao J. L., Peitgen H.-O, Sakas G. and Englert Gabriele (eds.), Fractal geometry and computer
graphics, Springer-Verlag, 1992.

- Falconer K. J., Fractal geometry: Mathematical foundations and applications, 3rd ed., Wiley, Chichester,
2014.

- Fisher Y., Fractal image compression (ed.), Springer-Verlag, New York, 1995.
- Hoggar S. G., Mathematics for computer graphics, Cambridge University Press, Cambridge, 1992.
- Lu N., Fractal imaging, Academic Press, San Diego, CA, 1997.



L R
Bibliography

- Mandelbrot B. B., Fractals: Form, chance and dimension, W. H. Freeman, San Francisco,
1977.

- Mandelbrot B. B., The fractal geometry of nature, W. H. Freeman, New York, 1982.

- Massopust P. R., Fractal functions, fractal surfaces and wavelets, 2nd ed., Academic Press,
San Diego, CA, 2016.

- Massopust P. R., Interpolation and approximation with splines and fractals, Oxford
University Press, 2010.

« Mc Mullen C., Complex dynamics and renormalization, Princeton Univ. Press, Princeton,
NdJ, 1994.

- Nikiel S., Iterated function systems for real-time image synthesis, Springer-Verlag,
London, 2007.

- Peitgen H.-O., Jurgens H. and Saupe D., Fractals for the classroom, Springer-Verlag,
1992.

- Peitgen H.-O. and Richter P. H., The beauty of fractals, Springer-Verlag, New York, 1986.

- Peitgen H.-O. and Saupe D. (eds.), The science of fractal images, Springer-Verlag, New
York, 1988.

- Steinmetz N., Rational iteration, de Gruyter, Berlin, 1993.



.
Bibliography

- Mmmouvtng Av. X., Avvauika ovotnuara & yaog, Topog A’. BouAyapn, 1989.

- Mmouvtng Av., Avvauika ovortnuara kat yaog, Topog A. Ilamaocwtnpilouv,
1995.

- Evayyelatou-Aadda Aewvn, Lrovyeia fractal yeopstpiac, Tunpa
MaOnpatirev E.K.I1.A., 2000.

- ApaxwBitng Ioav., Kioaywyn oty yaotikny dvvaulkn kair ota fractals
(kdlaonosion), Exdooere Iammaowtnpilou, 2001.

- Mmmouvtne T., O Baviaoroc koouoc twv fractal, Leader Books, 2004.

- Bak P., Ilo¢ Asitovpysi n pvon: H emotnun tng autoopyavoUueEVHC
rkproipotntac, Ekoooeig Katomtpo, 2008.

- Avaotaotlou Xt. xar Moouving Av., Lvveyn kair Orakpita OUVAIKG OUOTHLOTA
kair uia stoaywyn oty Bewpia tov yaove, B 'Exo. A. I'. IIveupatikog, 2020.



5
Outline

Prologue

Introduction

On the dimension

Iterated function systems
Fractal interpolation
Complex analytic dynamics

SENAN NS e




I
Outline

Prologue

Introduction

On the dimension

Iterated function systems
Fractal interpolation
Complex analytic dynamics

O Ot Lo o=



1. PROLOGUE

- Fractality
- Determinism
- Chaoticity



Introduction

The investigation of the meaning of words is the beginning of education.
Antisthenes

-Fractal comes from the Latin adjective
fractus, which has the same root as
fraction and fragment, and means
“Irregular or fragmented;” 1t 1s related to
frangere, which means “to break.”



Determinism and Chaos

- Like the queen of England, determinism reigns but does not govern.
Michael Berry (1988),
Professor in the Department of Physics,
University of Bristol

- Xaog: 'H aBuooog, peya BapaBpov | | to ameirpo oxotog (Ortaotnpa): (J1te)
oUYXUOI], AVAOTATOOI], AKATAOTAOLA, aTtadia.

- Xaog: AipoBAerrtn Kataotaon OtV omola IIepLePXeTal £Va AUTIOKPATLKO
ovuotnua AOY® suatodnotlag otig apXikeg ouvOnxkeg.

- Kataotaon aduvaptag mpoBAewng, @aivouevikng TUXatoTnTag T1e
OUIIEPLPOPAC EVOC ALTLOKPATIKOU GUOTIATOC.
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2. INTRODUCTION

- Early history
- Classic fractals
- Space-filling curves



Introduction

Many natural and artificial phenomena

- have the very fundamental characteristic of invariance under different
scales,

- have infinite details at every point,
- are self-similar across different scales and

- can be described by a procedure that specifies a repeated operation for
producing the details.



.. S
The beginning

- Draw a line on a sheet of paper.

- Euclidean geometry tells us that this 1s a figure of one dimension,
namely the length.

- Now extend the line.

- Make 1t wind around and around, back and forth, without crossing
1tself, until 1t fills the entire sheet of paper.

- Euclidean geometry says that this 1is still a line, a figure of one
dimension.

- But our intuition strongly tells us that if the line completely fills the
entire plane, 1t must be two-dimensional.



(Genesis

- Such thinking started a revolution in mathematics about a hundred years
ago.

- Mathematicians such as Georg Cantor, Giuseppe Peano, David Hilbert,
Felix Hausdorff, Helge von Koch and Wactaw Sierpinski drew curves that

€

were called “monsters”, “psychotic” and “pathological” by traditional
mathematicians.

- A new type of dimensioning was proposed, in which a curve could have a
fractional dimension, not just an integer one.



.
Weierstrass function (1872)

- The Weilerstrass function

f(x) = Xp=oa" cos(b™mx),
where 0 <a <1, b positive odd
integer and ab > 1+ 3/27 1s an
example of a pathological real-
valued function on the real line.

- The function has the property of
being continuous everywhere
but differentiable nowhere.

Plot of Weilerstrass function over the

- It 1s named after its discoverer interval [-2, 2]. Like some fractals, the

Karl Weierstrass. function exhibits self-similarity: every zoom
(red circle) is similar to the global plot.




Cantor (ternary) set (1883)

Discovered in 1874 by Henry John Stephen Smith and introduced by German mathematician Georg Cantor

d 1’

d I 7 .
{ 1 1 1 1A o /9 1
o — — —

- Initially, we consider the closed set ¢, = [0, 1].

- Remove from c, its middle third. What remains is the set ¢; = [0, 1/3] U
12/3, 1].

- Remove the middle third of [0, 1/3] and [2/3, 1].
- Continuing this ad infinitum, we get the Cantor set

C= ﬂcn.
n=0



.’
A brief history

- In 1890, Giuseppe Peano discovered a densely self-intersecting curve that
passes through every point of the unit square.

- His purpose was to construct a continuous mapping from the unit interval
onto the unit square.

- He was motivated by Georg Cantor’s earlier counterintuitive result that
the infinite number of points 1n a unit interval is the same cardinality as
the infinite number of points in any finite-dimensional manifold, such as
the unit square.

- The problem Peano solved was whether such a mapping could be
continuous; 1.e., a curve that fills a space.



.
The Peano curve (1890)

Peano, G. “Sur une courbe, qui

remplit toute une aire plane.”
Math. Ann. 36 (1890), 157-160. ( "



https://spatialexperiments.wordpress.com/2016/09/18/fractal-geometry-in-nature-and-architecture/koch-minkowski-peano/

Hilbert curve 1 2D (1891)

- A continuous fractal space-
filling curve first described by
the German mathematician
David Hilbert in 1891 as a
variant of the space-filling

curves discovered by Giuseppe
Peano 1in 1890.

- The first four iterations are
shown on the right.

- D. Hilbert, “Uber die stetige
Abbildung einer Linie auf ein
Flachenstiick”. Math. Ann. 38
(1891), 459—460.
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Moore curve (1900)

- One difference being that the

start and end points are
adjacent corners of the square in
the Hilbert curve, and adjacent
points 1n the Moore curve.

- The first six stages of the Moore
curve are shown on the right.

- Moore, Eliakim Hastings. “On

Certain Crinkly Curves.”
Transactions of the AMS, vol. 1, 2nbd

no. 1 (1900), 72—90.
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Hilbert curve in 3D

- The Hilbert curve as well as
the Moore curve are two

Wi

. . " 1 | '-‘,' s
famous plane-filling curves g’,ﬂ;i{hrﬁil QL
that can be extended to 3D FHRRL = g
space-fill; R b B

pace-1illing curves. ST 1 NG
. . NI IR
- A three-dimensional analog of \ T N
the Hilbert curve 1s shown on Kr NN S
the right; here with the first N\ |

three 1terations intertwined.



Moore curve 1n 3D

- The Hilbert curve as well as the
Moore curve are two famous
plane-filling curves that can be
extended to 3D space-filling
curves.

- A three-dimensional analog of
the Moore curve 1s shown on the
right; here with the first three
1terations intertwined.

- Again, in the Hilbert curve the
start and end are adjacent
corners of the cube, while in the
Moore case the ends are
adjacent points.




Koch snowtlake (1904)

/NILEIEIES

The first five iterations of the Koch snowflake

- The Koch curve can be constructed by starting with an equilateral triangle, then
recursively altering each line segment as follows:
1. Divide the line segment into three segments of equal length.

2. Draw an equilateral triangle that has the middle segment from step 1 as its base and points
outward.

3. Remove the line segment that is the base of the triangle from step 2.
- After one iteration of this process, the result is a shape similar to the Star of David.

- The Koch curve is the limit approached as the above steps are followed over and
over again.



Sierpinski gasket (1915)

AL LS L

- Start with a solid (filled) equilateral triangle S(0).

- Divide this into four smaller equilateral triangles using the midpoints of the
three sides of the original triangle as the new vertices and remove the

interior of the middle triangle to get S(1).

- Repeat this procedure on each of the three remaining solid equilateral
triangles to obtain S(2) and continuing we get

S = ﬁ S(i).



Sierpinski carpet (1916)

- Begin with a square.

- The square 1s cut into 9 congruent subsquares in a 3-by-3 grid, and the
central subsquare 1s removed.

- The same procedure 1s then applied recursively to the remaining 8
subsquares, ad infinitum.



Sierpinski tetrahedron

- The tetrix is the three-dimensional analogue of the Sierpinski triangle,
formed by repeatedly shrinking a regular tetrahedron to one half its original
height, putting together four copies of this tetrahedron with corners touching,
and then repeating the process.

- This can also be done with a square pyramid and five copies instead.



Menger sponge (1926)

4
d

- Begin with a cube. (first image)
- Divide every face of the cube into 9 squares, like a Rubik's Cube. This will
subdivide the cube into 27 smaller cubes.

- Remove the cube at the middle of every face and remove the cube in the
center, leaving 20 cubes, resembling a Void Cube. (second image). This is a
level-1 Menger sponge.

- Repeat steps 1-3 for each of the remaining smaller cubes.



Deterministic nonperiodic tlow (1963)

- In 1962, Edward Lorenz was (1972) Predictability: Does the
attempting to develop a model of flap of a butterfly’s wings in

the weather when he observed Brazil set off a tornado 1n Texas?
some strange discrepancies in -
the behaviour of his model.

- In 1963 he described 1n his
report a family of three ordinary
differential equations with
parameters a, b, c:

dx/dt = a(y — x) |
dyldt = bx —y — xz Edward Norton Lorenz (1917—
2008)

dz/dt = xy — cz
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The butterfly effect

- Predictability: Different
conclusions can be drawn from
similar 1nitial assumptions or
conditions.

- The complicated correlations and
dependencies of the parameters
can finally be explained primarily
through graphical methods.

- The Lorenz system of equations is
perhaps the most well-known
example of a continuous dynamical

Lorenz attractor :
(@=10, b =28, c = 8/3) system with a fractal attractor.



. S
Sharkovsky's Theorem (1964)

» Order the natural numbers as follows:
3<H<T7<9<11<13<15<---<2-3<2-5<2-7
<2-9<...<2-2-3<2-2-5<2-2-7
<2-2:9<-.<2:2-2"3<---<25<24<23<22<92<]1.
- Now let F' be a continuous function from the reals to the reals and suppose

p<q in the above ordering. Then, if ' has a point of least period p, then F
also has a point of least period q.

- A special case of this general result, also known as Sharkovsky's theorem,
states that, if a continuous real function has a periodic point with period 3,
then there 1s a periodic point of period n for every integer n.
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Strange attractors (1971, 1976)

Ruelle, D., Takens, F. “On the nature of turbulence”, Rossler, O. E. (1976), “An Equation for Continuous
Commun. Math. Phys. 20, 167-192 (1971) Chaos”, Physics Letters, 57A (5): 397-398



Characterization of Strange Attractors

- Let T(x, y) be a given transformation in the plane with coordinates x and y. A bounded
subset A of the plane is a chaotic and strange attractor for the transformation 7, if there
exists a set R with the following properties.

- Attractor. R is a neighborhood of A, i.e., for each point in A there is a small disk centered at (x, y) which is
contained in R. This implies in particular that A is in R. R is a trapping region, 1.e., each orbit started in R
remains in R for all iterations. Moreover, the orbit becomes close to A and stays as close to it as we desire.
Thus, A 1s an attractor.

- Sensitivity. Orbits started in R exhibit sensitive dependence on initial conditions. This makes A a chaotic
attractor.

- Fractal. The attractor has a fractal structure and is therefore called a strange attractor.
- Mixing. A cannot be split into two different attractors. There are initial points in R with orbits that get
arbitrarily close to any point of the attractor A.
- Strange nonchaotic attractors also exist; it is a form of attractor which, while converging
to a limit, 1s strange, because 1t 1s not piecewise differentiable, and also non-chaotic, in
that 1its Lyapunov exponents are non-positive.



. S
Period three implies chaos (1975)

- Robert May’s friend James A.Yorke did a rigorous mathematical analysis
of the behaviour of the population equation and in December 1975,
together with Tien—Yien L1 published a paper.

- What Yorke and L1 were able to show 1s that, if a function similar to the
population equation has a period of three, then it has periods of every
other number, n.

- There are two parts to the paper of Li and Yorke. First, that period three
1mplies all other periods. This 1s a very special case of Sharkovsky’s
theorem. But Li and Yorke also proved that period three implies an
uncountable number of non-periodic points, which 1s not part of
Sharkovsky’s paper.



1.0
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0.6 —
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Final state (bifurcation) diagram for the population equation.
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Feigenbaum constant (1975)

- Feigenbaum discovered in 1975, using an HP-65 calculator, that the ratio
of the difference between the values at which such successive period-
doubling bifurcations occur tends to a constant of around 4.6692...

- If Mitchell Feigenbaum had known of the work of Robert May and James
Yorke, or if he had been able to view May’s bifurcation diagrams, he might
never have made his significant discovery.

- But, 1n 1976, Feigenbaum was looking at the population equation from a
different point of view.



Robert W. Brooks and Peter Matelski (1978)

The first published picture of the Mandelbrot set as part of a study of

Kleinian groups. The
orbit.

set of ¢’s such that f(z) = z? + ¢ has a stable periodic
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Mandelbrot set (1980)

The set of complex values ¢ that do not diverge under the squaring
transform p(z) = z2 + ¢ beginning with z = 0.




B
Barnsley fern (1988)

- It 1s a fractal named after the
British mathematician
Michael Barnsley who first
described 1t 1n his book
Fractals Everywhere.

- He made 1t to resemble the
Black Spleenwort, Asplenium
adiantum-nigrum.




Landscapes
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3. ON THE DIMENSION

- General concept
- Metric spaces
- Self-similarity



. S
The concept

- The dimension of a space or object 1s informally defined as the minimum
number of coordinates needed to specify each point within it.

- A line has a dimension of one because only one coordinate is needed to
specify a point on it.

- A surface such as a plane or the surface of a cylinder or sphere has a
dimension of two because two coordinates are needed to specify a point on
1t.

- The 1inside of a cube, a cylinder or a sphere is three-dimensional because
three coordinates are needed to locate a point within these spaces.

- As one would expect, the (topological) dimension 1s always a natural
number.



Inductive dimension

- Consider a discrete set of points (such as a finite collection of points) to be
0-dimensional.

- By dragging a 0-dimensional object in some direction, one obtains a 1-
dimensional object.

- By dragging a 1-dimensional object in a new direction, one obtains a 2-
dimensional object.

- In general, one obtains an (n + 1)-dimensional object by dragging an n-
dimensional object in a new direction.

- The inductive dimension of a topological space may refer to the small
inductive dimension or the large inductive dimension and 1s based on the
analogy that (n + 1)-dimensional balls have n-dimensional boundaries,
permitting an inductive definition based on the dimension of the
boundaries of open sets.



Similar triangles

- In geometry two triangles, AABC and ADEF, are similar if and only if
corresponding angles have the same measure: this implies that they are
similar if and only if the lengths of corresponding sides are proportional.

- Two geometrical objects are called similar if one can be obtained from the
other by uniformly scaling (enlarging or reducing), possibly with additional
translation, rotation and reflection.

A |



Metric space

A non-empty set V becomes a metric space when supplied with a mapping
(metric) of the form p: Vx V — R given by the formula (x, y) = p(x, y) which

for each x, y, z € V has the properties:
(M1) p(x, y) > 0, (non-negativity)
and
o(x, y) =0 < x =y (1dentity)
(M2) p(x, y) = p(y, x) (symmetry)
(M3) p(x, y) < p(x, 2) + p(z, y) (triangle 1nequality)

The members of V are frequently called ‘points’ and the non-negative, real
number p(x, y) the ‘distance’ from the ‘point’ x to the ‘point’ y.



Examples

- The set R of all real numbers with the usual metric p(x, y) = |x —y| for all x, y € R 1s a metric
space, which 1s called a real line.

- The most important space for us i1s the familiar n-dimensional Euclidean space R" = {(x(]l, Koy eees

x,):x; € Ryi=1, 2, ..., nj with the Pythagorean or root mean square error metric defined by
p2(ty) = | (i = y)?
i
or with the Hippodamean metric
pr(6y) = ) Ixi = il
i
where x = (X1, Xg, ..., X,), ¥ = V1, Yor---» V) € R x,, v, € R, sometimes called the box or city-block

metric.



The locus

Hippodamean metric Pythagorean metric
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Similarity

- A mapping f: X — Y, where (X, p) and (Y, 0) are metric spaces is a
similarity or similitude of ratio or scale r, if

o(f(x), fy)) =1 p(x, y)

for every x, y € X and some fixed r € R..

- If the similarity ratio is greater than one, we have a dilation, whereas if
the similarity ratio is less than one, we have a contraction.

- When r =1 a similarity is called an isometry (rigid motion).



Self-similarity

- A self-similar object 1s exactly or approximately similar to a part of itself
(1.e. the whole has the same shape as one or more of the parts).

- Many objects 1n the real world, such as coastlines, are statistically self-
similar: parts of them show the same statistical properties at many scales.

- Self-similarity i1s a typical property of fractals.

- Scale invariance 1s an exact form of self-similarity where at any

magnification there is a smaller piece of the object that is similar to the
whole.



Koch curve

- The single line segment in
Step 0 1s broken into four

equal-length segments 1in Step
1.

- This same “rule” 1s applied an
infinite number of times
resulting in a figure with an
infinite perimeter.

- The first five stages are
shown on the right.
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Randomly placed generator
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Dimension 1.2619...

- Consider a Koch curve, where each of the 4 new lines is 1/3 the length of
the old line.

- Blowing up the Koch curve by a factor of 3 results in a curve 4 times as
large (one of the old curves can be placed on each of the 4 segments)

« Therefore, 4 = 3¢ or

_ln4

d=——.
In3



Similarity dimension

- A set F'is called self-similar, if
F=w(F) v wy(F) v - U wyF),

where w, are similitudes with common similarity ratio r and the sets w,(F)
do not overlap.

- For a self-similar shape F made of [N copies of itself, each scaled by a
similarity with contraction factor r, the similarity dimension is
dim. F — log(N)
T T log(1/r)




Examples

- The graph of Weierstrass function 2 + }gg‘; under constraints

- Cantor set N=2, r=1/3, dim ,C= log 2/log 3 = 0,630929...

- Koch snowflake N =4, r = 1/3, dim K = log 4/log 3 = 1,261859507...

- Sierpinski gasket N =3, r = 1/2, dim S = log 3/log 2 = 1,584962500...
- Sierpinski carpet N =8, r = 1/3, dim,C = log 8/log 3 = 1,892789260...
- Peano curve N=9, r=1/3, dim P = log 9/log 3 = 2

- Hilbert curve N =4, r = 1/2, dim H = log 4/log 2 = 2

- Moore curve N =4, r = 1/2, dim M = log 4/log 2 = 2

- Sierpinski tetrahedron N=4, r = 1/2, dim /T = log 4/log 2 = 2

- Menger sponge N = 20, r = 1/3, dim M = log 20/log 3 = 2,726833028...
- 3D Hilbert curve N =8, r = 1/2, dim H = log 8/log 2 = 3

+ 3D Moore curve N = 8, r = 1/2, dim M = log 8/log 2 = 3




Box-counting dimension

- Let 4 be a set In a metric space.

- For each >0, let N(4, ¢) denote the smallest number of closed balls of
radius ¢ > 0 needed to cover A4.

If
- hm{ In(1/ N(A4, g))}
In(&)

exists, then D 1s the box-counting dimension of 4.




Estimating the box-counting dimension of the coast of
Great Britain

9 7_5 1.:)0 km
0 75 150
miles




Higuchi dimension

- It 1s an approximate value for the box-counting dimension of the graph of a
real-valued function or time series.

- This value 1s obtained via an algorithmic approximation so one also talks
about the Higuchi method.

- It has many applications in science and engineering and has been applied
to subjects like characterising primary waves 1n seismograms, clinical
neurophysiology and analysing changes in the electroencephalogram in
Alzheimer’s disease.



Hausdortt-Besicovitch dimension

- Let X be a metric space. If Sc X and d € [0, +x), the d-dimensional
Hausdorff content of S 1s defined by

C:(S) = inf {Z r? : there is a cover of S by balls with radii 7, > O}.

- In other words, C¢(S)is the infimum of the set of numbers § > 0 such that
there is some (indexed) collection of balls {B(x,, r,) : i € I} covering S with r,
> ( for each 1 € I which satisfies

Zrl.d > 0.

iel
- The Hausdorff dimension of S 1s defined by
dim,, (S) =sup{d > 0:Cj;(S) =0 =inf {d 2 0: Cj;(S) =0}.



Examples

- Let F' be a flat disk of unit radius in R3.

- From familiar properties of length, area and volume C,, (F)= length (F) = oo,
0 < C;(F)= (4/m) x area (F) = 4 <o and C;,(F) = (6/m) x vol(F) = 0.
- Thus, dimy F=2, withC,(F)=wif d <2 and Ci,(F)=0 if d > 2.



Intuition

- The Hausdorff dimension measures the local size of a space taking into
account the distance between points, the metric.

- Consider the number N(r) of balls of radius at most r required to cover X
completely.

- When r i1s very small, N(r) grows polynomially with 1/r. For a sufficiently
well-behaved X, the Hausdorff dimension is the unique number d such that
N(r) grows as 1/r¢ as r approaches zero.

- More precisely, this defines the box-counting dimension, which equals the
Hausdorff dimension when the value d 1s a critical boundary between
orowth rates that are insufficient to cover the space, and growth rates that
are overabundant.



Physical meaning

- Amount of variation in the object details
- A measure of roughness (fragmentation) of an object

- The concept was introduced 1n 1918 by the mathematician Felix
Hausdortt.

- Many of the technical developments used to compute the
Hausdorff dimension for highly irregular sets were obtained by
Abram Samoilovitch Besicovitch.



What 1s a fractal?

- A fractal 1s by definition a set whose Hausdorff-Besicovitch
dimension strictly exceeds its topological dimension.

- Since the dimension 1.2619 1s greater than the dimension 1 of
the lines making up the Koch curve, the curve 1s a fractal.
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4. ITERATED FUNCTION
SYSTEMS

- Preliminaries
- Distances between sets
- Dynamic systems



On circles and disks

- The notion of distance in a metric space leads to the notion of the open disk
which 1s the collection of points whose distance from the centre of the ‘disk’
equals a given positive real number.

- Hence, the set D(x, ¢) ={y € X : p(x, y) < e} defines an open disk centred at
x € X with radius £ > 0.

- An open disk i1s always an open set but not all open sets are open disks.

- An open set 1s the one which contains an open disk for every point of the set.
In a dual sense, a closed set 1s the one whose complementary set 1s open.

- Hence, the set A(x, &) ={y € X : p(x, y) < e} defines a closed disk centred at
x € X with radius £ > 0.

- The set K(x, &) ={y € X : p(x, y) = ¢} defines a circle centred at x € X with
radius £ > 0.



.
Example 1

(a) (b) (©)

(a) Open disk, (b) closed disk and (c) circle centred at x and of radius ¢
with respect to the usual metric of R



Example 2

- .
v 2
// \\
/ \ /
& / g \ &
f B \ [
° | Y | } @ :
X \ X | \ X
\ /
\\ /
\\ /// /
N // AN
AN ) e : ~
(a) (b) (c)

(a) An open disk, (b) a closed disk and (c) a circle centred at x
and of radius £ with respect to the p, metric of R?



Example 3

- ~
Seaas

-

(b) ()

(a) An open disk, (b) a closed disk and (c) a circle centred at x
and of radius £ with respect to the p, metric of R3

(a)



Example 4

(a) (b) ()

(a) An open disk, (b) a closed disk and (c) a circle centred at x
and of radius £ with respect to the p; metric of R3



More topology

- The closure of a set A — X, denoted by 4, is the smallest closed set
containing A.

- The set A c X is called bounded, if there exists M > 0 and x, € X such that
A c D(xy,, M).

- A subset K of R” 1s compact if and only if it 1s closed and bounded.



The space where fractals live

- Let (X, p) be a metric space. Then, H(X) denotes the space whose
points are the compact subsets of X, other than the empty set,
1.e.

HX)={d+Ac X:A1s compact}.

- Sometimes H(X) is referred to as the ‘space of fractals in X* (but
note that not all members of H(X) are fractals).

- The difference between a subset of H(X) and a nonempty,
compact subset of X is that H(X) 1s a set of sets, so every subset
of 1t 1s a set of compact sets.



Distance between a point and a set

- The subset of real numbers {p(x, y) : y € B}, where x € X and B € H(X) has a
smallest value.

- Then, as the distance of the point x from the subset B we consider
min{p(x, y) : y € B}.

d(a, B) = p(a, b) d(a, B)=0



Distances between sets

- Let A and B be two nonempty, compact subsets of a metric space (X, p). We
define as
d,(B) = max{d(x, A) : x € B}
and
dp(A) = max{d(x, B) : x € A}.
- The function dz(A) 1s usually called the directed Hausdorff distance from A to
B.




The Hausdorff metric

- It measures how far two subsets of a metric space are from each
other.

- It turns the set of nonempty, compact subsets of a metric space
into a metric space in 1ts own right.

- If

h(A9 B) — maX{dA(B)a dB(A)}a
then (H(X), h) 1s a metric space.



More topology

- One of the most useful properties a metric space may have, has to do with
the so-called Cauchy sequences. We say that a sequence {x, | n € N} is a

Cauchy sequence iff V ¢ > 0, I3 n, € N: p(x,, x,,) < & for all n, m > n,,.

- That 1s, a Cauchy sequence 1s a sequence whose elements come closer and
closer as n increases. In general, every converging sequence is always a
Cauchy sequence.

- Whenever the reverse holds, we say that our metric space 1s complete;
more formally, a metric space 1s by definition complete if and only if a
Cauchy sequence is a converging sequence.

- (H(X), h) 1s a complete metric space whenever (X, p) 1s a complete metric
space.



Iterated function

- In mathematics, an iterated function is a function which i1s composed with
1tself, possibly ad infinitum, in a process called iteration.

- Iteration means the act of repeating a process with the aim of approaching
a desired goal, target or result.

- The formal definition of an iterated function on a set X follows.



Dynamic system

- Define f* as the k-th iterate of f, where k is a non-negative integer, by [0 =
idy and f#*1=fo f* where idy is the identity function on X and fo g

denotes function composition.
- Let S be a subset of R” and let f: S — S be a continuous mapping. An
iterative scheme {f*} is called a discrete dynamic system.

- A periodic point of period n of the transformation f: X—X 1s a point xeX
such that f*(x) = x for some neN. The smallest positive integer n satisfying

the above 1s called the prime period or least period of the point x.
- A periodic point of f of period 1 is called a fixed point of f.
- The orbit of a periodic point of f i1s called a cycle or periodic orbit of f.

- We are interested in the behaviour of the sequence of iterates, or orbits, {f
k(x)} for various initial points x € S, particularly for large k.



Some fixed-point theorems

- (Brouwer) Every continuous function from a closed disk to
itself has at least one fixed point. The theorem holds only for
functions that are endomorphisms (functions that have the
same set as the domain and codomain) and for nonempty
sets that are compact (thus, 1n particular, bounded and
closed) and convex (or homeomorphic to convex).

- Let f: X - X be a continuous mapping, where (X, p) 1s a
compact metric space. Then there exists a nonempty, closed
set A X such that

f(4) = A.



Contraction mapping

- A contraction mapping, or contraction, on a metric space (X, p)
1s a function f from X to itself, with the property that there is a
nonnegative real number s < 1 such that for all x and y in X,

p(f(x), f(¥)<s-p(x,y).
- The smallest such value of s is called the Lipschitz constant of /.
- Contractive maps are sometimes called Lipschitzian maps.

- If the above condition is satisfied for s < 1, then the mapping is
said to be non-expansive.



Banach fixed point theorem

- Also known as the contraction mapping theorem or contraction
mapping principle.

- Let (X, p) be a nonempty, complete metric space. Let T: X — X
be a contraction mapping on X.

- Then the map T admits one and only one fixed point x* in X
(this means T(x*) = x*).

- Furthermore, this fixed point can be found as follows: Start with
an arbitrary element x, in X and define an iterative sequence by

x,=T(x,_) forn=1, 2,3, .... This sequence converges and its
limit 1s x*.



S
The attractor

- We shall call a subset F' of S an attractor for fi1f F'i1s a closed set that 1s
invariant under f (i.e., f(F) = F) such that the distance from f%(x) to F

converges to zero as k tends to infinity for all x in an open set V containing
F.

- The set Vis called the basin of attraction of F.



5
Iterated Function Systems (I1FS’s)

A (hyperbolic) Iterated Function System (IFS) on the metric
space (R”, ||]|) 1s defined as a pair {R”; w,_,,}, Where

w.:R*—>R* 1=1, 2, ..., M}

1s a finite set of contractions with contractivity factors s;, 1.e. for
every1=1,2,....M

| lw;(x) —w,¥) || <s; | |x=y ][] Vx,y e R

for some 0 <'s; < 1.



Hutchinson operator

- A collection of functions on an underlying space X.
- Formally, let {R”; w,_;,;4 be an IFS, or a set of M contractions

from a compact set X into itself. We may regard this as defining
an operator H on the power set 2% as

M
H:A- | Jw, (A4),
i=1

where A 1s any subset of X.

- The 1teration of these functions gives rise to the attractor of an
iterated function system, for which the fixed set i1s self-similar.



The attractor of an IF'S

- The attractor of a (hyperbolic) IFS is the unique set
A, =limH*(4,)

k—o0

for every starting set A,, where

H(4)=Un (4)
for all AeH(R"). )

-The map H 1s also called the collage map to alert us to
the fact that H(A) 1s formed as a union or ‘collage’ of
sets.



Affine transtformations

A transformation w 1s affine, if it may be represented by a matrix A and
translation t as w(x) = Ax + t, or, if X = R?,

L )

whereas if X = R?



-
Example: Modified Sierpimski gasket

Consider an IFS of the form {R?; w,,w,,w,}, where
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The geometry of nature




.
Recurrent I1FSs

- An IF'S with probabilities, written formally as {X; w, ws, ..., Wy; P, Doy ---»
Dyt or, somewhat more briefly, as {X; w,_,; p1_a4, glves to each
transformation in H a probability or weight.

- If the weights of transformations differ, so do the measures on different
parts of the attractor.

- A non-self-similar attractor, however, is more easily represented with a
recurrent iterated function system, or RIFS for short.

- Each transformation has, instead of a single weight for the next iteration,
a vector of weights for each transformation, {X; w,_y; p;; € [0, 1]; 1,7 =1, 2,
.., M}, so that the matrix of weights is a recurrent Markov operator for the
Hutchinson operator’s transformation.
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5. FRACTAL INTERPOLATION

- Introduction
- Functions
- Surfaces



Why interpolation functions?

- Euclidean geometry and elementary functions are the
basis of the traditional methods for analyzing
experimental data

- These functions can be expressed by simple
mathematical formulas

- They can be stored 1in small files and computed by fast
algorithms



. .
Why fractal?

- Integral dimension - Non-1integral dimension

- Suitable for the design of - Suitable for the design of
man-made objects natural objects (e.g. clouds,
(e.g. circles, squares) mountain ranges)

- Better fitting to experimental
data (e.g. EEG, ECG,
selismograph, 1mage
compression)



S . A
An example...

A fractal interpolation function.



Interpolation functions in R

- Let the continuous function f be defined on a real closed interval I = [x,,x;,] and with
range the metric space (R, |-|), where

Xg <Xy < <X
It 1s not assumed that these points are equidistant.

- The function fis called an interpolation function corresponding to the generalised set
of data

{x,, v, € K=IxR:m =0,1,...,M},
if f(x,,) =y, for all m =0,1,...,M and K = IxR.

- The points (x,,, y,,) € R? are called the interpolation points. We say that the function f
interpolates the data and that (the graph of) f passes through the interpolation points.



Affine fractal interpolation

Let us represent our, real valued, set of data points as
{(u,v,):n=0,1,...., Nyu,<u,,}
and the interpolation points as
{x,,y,):m=0,1, ..., M; M < N},
where u, 1s the sampled index and v, the value of the given point in u«,,.

The affine fractal interpolation function (AFIF) is constructed with M affine mappings of the

(-0 o)

where s; € (-1,1) 1s the (free) vertical scaling factor, whereas the coefficients a,, c;, d, e; arise from
the constraints

X0 Xi1 Xy X .
w, = and w, = i=12,...,M.
Yo Vic Y Vi



Affine fractal interpolation

- Solving the above equations results in

X —X_4 d = XpXi — XX
a. =———, i
l Xy — X, Xm ~ %o
. = Yi ~Yiq _g Yu Yo o = XmYia — Xl _g XpYo — %ol um
i i 4 i i
Xy — X, Xy — X, Xy — X, Xy — X,

1.e. the coefficients a,, c;, d,, e; are completely determined by the interpolation
points, while the s; are free parameters satisfying |s;| <1 in order to guarantee

that the IFS i1s hyperbolic with respect to an appropriate metric for every i = 1, 2,
.., M.

- The transformations w; are shear transformations: line segments parallel to the
y-axis are mapped to line segments parallel to the y-axis contracted by the factor
| S; |
- For this reason, the s; 1s called vertical scaling (or contractivity) factor.



IF'S and interpolation functions

- The IFS {R?; w,_,; has a unique attractor, that is the graph

of some continuous function which interpolates the data
points.

- This function 1s called a fractal interpolation function (FIF),
because 1ts graph usually has non-integral dimension.

- A section 1s defined as the function values between
interpolation points. It 1s a function with a self-affine graph
since each affine transformation w, maps the entire (graph

of the) function to its section. The above function is known
as affine FIF, or AFIF for short.



1D fractal interpolation

1k

w,(K)

0.4 S 0.8
section

We map the entire (graph of the) function to each section of it.



Piecewise affine fractal interpolation

A pair of data points, which are called addresses, 1s now associated with
each w;,

{(il.,j,j?l.’j) i=12,..,.M;j=12}.
The domain 1s now the pair of addresses.

The constraints of the above mentioned case become
X; | ('xi—l j X; 5 E’xi )
wil o= and w,| .7 |=
Vi1 il YVin Vi

Xip =X, > X, —X,_ i=12,....M.

L,

subjected to



Affine fractal interpolation

- Solving the above equations results in

X.—X X. X ,—X. . X.
_ 1 i—1 7,271 1,177
az T~ = di - - -
xi,z xi,l xi,2 _xi,l
o= Yi—VYia s Yia " Yix o = Yiolia XAl _s XioYiin=Xi1Yio

foreveryi1=1, 2, ..., M.
- The function constructed as the attractor of the above-mentioned IFS is

called recurrent fractal interpolation function, or RFIF shortly,
corresponding to the interpolation points.

- A RFTF 1is a piecewise self-affine function since each affine transformation
w, maps the part of the (graph of the) function defined by the
corresponding address interval to each section.



Constraints

* For practical reasons suppose that the distance between the
interpolation points along the horizontal and vertical direction

1s O.

*We mapped the entire (graph of the) function to each section of
the function. Now we map domains of the function to sections of
the function. Suppose that each domain has size A.

* Points within a given interpolation section are not necessarily
contained within any domain.



Interpolation functions in R

- Let the discrete data
{(, v 25 =2(x;, ) e R¥:1=0,1, ..., N;j =0, 1, ..., M}
be known.

- Each affine mapping that comprises the hyperbolic IFS {R3; w,_y ;34 1s given by
X a b 0\ x h

nm nm nm

Wy:C d Oy+knm’

Z enm gnm Snm Z lnm
with |s,, | <1lforeveryn=1,2,..., Nand m =1, 2,..., M. The condition
anm bnm
<1
Cnm dnm

ensures that

x anm bnm x hnm
u = +

1s a similitude and the transformed surface does not vanish or flip over.



. . B
Rectangular lattices

A Domain

E F WK

A B <~ 5 —

Domains for fractal interpolating surfaces over rectangular lattices using
RIFS on (a) triangular tiling, (b) rectangular tiling.



Rectangular tiling
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Financial Time Series Modelling Using Fractal
Interpolation Functions

Manousopoulos P., Drakopoulos V. and
Polyzos E. (2023), AppliedMath 3(3), 510—
524;

https://doi.org/10.3390/appliedmath3030027

25.000

20,000 -

15.000 -

10.000 | Dataset 1—Bitcoin Prices

Mean Abs. Error  Mean Abs. % Error RMSE

ARIMA 547.71 6.46% 740.16

ool GARCH 557.96 6.55% 762.67
RFIF 198.40 2.34% 289.18

——— RFIF @ Interpolation Points =  Data Points ARIMA  ==neee GARCH

A time series of bitcoin prices (23 December 2018-16 December
2020) modelled by (1) a recurrent fractal interpolation function, (i1)
the autoregressive integrated moving average ARIMA(1, 1, 0)
model, (ii1) the generalised autoregressive conditional
heteroskedasticity GARCH(1,1) model.

Results of the three methods for the first dataset (Bitcoin prices).


https://doi.org/10.3390/appliedmath3030027

Obstetric ultrasound modelling and analysis with
fractal interpolation methods

THRIASIO HOSPITAL | FPS12D 17.0cm MI 1.3 |13-04-2011 Drakopoulos V. and Manousopoulos P. (2024)
Gynecology  |C84v/  GenTis 03 |18:36:17 In Kevin Daimi, Abeer Alsadoon, and Sara Reis
e — (eds.) Current and Future Trends in Health and
Medical Informatics Studies in Computational
Intelligence (SCI) Springer-Verlag.

Eigt-week ultrasound

Area of attachment of the trophoblast to the
maternal wall
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6. COMPLEX ANALYTIC
DYNAMICS

- Preliminaries
- Dynamic spaces
- Parameter spaces



Holomorphic functions

- A holomorphic function is a complex-valued function of one or more

complex variables that is complex differentiable in a neighbourhood of each
point 1n a domain in complex coordinate space C”.

- The existence of a complex derivative in a neighbourhood is a very strong
condition: It implies that a holomorphic function is infinitely differentiable
and locally equal to its own Taylor series (is analytic).

- Though the term analytic function 1s often used interchangeably with
“holomorphic function”, the word “analytic” 1s defined in a broader sense to
denote any function (real, complex, or of more general type) that can be
written as a convergent power series in a neighbourhood of each point in
1ts domain.

- That all holomorphic functions are complex analytic functions, and vice
versa, 1s a major theorem in complex analysis.



Convergence of functions

-Let Xbeasetandf, f,: X— (Y,p),n=1, 2, ..., where (Y, p) 1s a
metric space.

- The sequence (f,) converges uniformly to f if, for any £ > 0 there
1s ny, = ny(e) € N such that p(f,(x), f(x)) <eforallx e Xand n >

.
- The sequence (f,) converges locally uniformly on X to f if, every

point x € X has a neighbourhood in which (f,) converges
uniformly to f .



Example

Let f, = x™, 1f 0 < x < 1. The limiting function f has the value 0 in [0, 1) and
f(1) = 1. Since this is a sequence of continuous functions with discontinuous
limit, the convergence is not uniform on [0, 1].

17\
0.8 ¢
0.6

’ N

u.4; )
5
0.2 fs

U o ———




Pointwise convergence

- If f1s a polynomial of degree at least two, then for some radius r, we have

/@) =22]|z]

on the open set V=1{z: |z| > r}. Thus f* - o uniformly on V. However, we
also need the weaker convergence defined below.

- The sequence (f,) converges pointwise to f if, for all x € X,

lim 7, (x) = 1 (x),
i.e. for all x € X and & > 0 there is ny = ny(e, x) € N such that p(f,(x), f(x)) <e

for all n > n,,.



Convergence on subsets

- Let U < C and (f,), f be functions defined on U taking values in
C.

- We say that the sequence (f,) converges to f uniformly on all

compact subsets of U, if, for any compact set K < U and ¢ > 0,
there is ny = ny(K, €) € N such that |f,(2) — f(2) | <efor all n > n,

and z € K.

- Uniform convergence on compact subsets of U implies the
pointwise convergence on all of U.



Example

-Let U={z e C: |z| <1} and/,, f be complex functions with £ (2)
=z", f(z)=0forallze Uandn=1, 2, ....

- Then, for every z € U, we have
lim 7,(z) = limz" =0 = f(2),
and so f, —> f pointwise.
- Convergence of (f,) 1s not uniform to f on U
- f,, = f uniformly on all compact subsets of U.



Normal families

- Let U be an open subset of C and F be a family of functions defined on U
taking values in a metric space (Y, p).

- The family Fis normal in U, if every sequence of functions from this family
has a subsequence which converges uniformly on every compact subset of
U.

- F1s normal at a point z of U, 1f it 1s normal on some open set V containing
z.

- Notice that Fis then normal at every point of V.



Example

» Let f(z) =Az, A € C with |[A| > 1. Thus f(z)=A"z. Let U be an open subset
of C. All depends on whether or not 0 1s in U.

-0 ¢ U. We claim that {f* : U — C} 1s normal. For, in any compact and hence

closed subset Vof U, there is a least valuer >0 of |z| and so |fY(2)| >
|A*| r for all z1in V simultaneously. Thus f* — « uniformly on V.

- 0 € U. The statement that f* — o« on all compact subsets V of U is no
longer true, since f*(0) = 0 and we can choose V to contain 0. Furthermore,
f* — f (f analytic) 1s ruled out because for any z in U we have |f*(2) | - .
Thus (f*) 1s not normal on U.



Example

- Let f(z) =Az, A € C with |A]| <1.

- Then (f*) 1s normal on every open set U, because it converges uniformly to
the constant function 0 on every compact set.



Uniformly boundedness

- A uniformly bounded family of functions is a family of bounded functions
that can all be bounded by the same constant.

- This constant i1s larger than or equal to the absolute value of any value of
any of the functions in the family.

- Every uniformly convergent sequence of bounded functions is uniformly
bounded.

- The family of functions f,(x) = sin nx travelling through the integers, is
uniformly bounded by 1.



Montel’s theorem

- The first, and simpler, version of the theorem states that a family of
holomorphic functions defined on an open subset of the complex numbers i1s
normal if and only if it 1s locally uniformly bounded.

- This theorem has the following formally stronger corollary. Suppose that F

1s a family of meromorphic functions on an open set D. If z, € D is such
that F1s not normal at z, and U — D 1s a neighborhood of z,, then

U@
feF
1s dense 1n the complex plane.
- The stronger version of Montel's Theorem (occasionally referred to as the

Fundamental Normality Test) states that a family of holomorphic
functions, all of which omit the same two values a, b € C, 1s normal.



Julia and Fatou sets

- Around 1918-1920, the French - They discovered the dichotomy of the

mathematicians G. Julia and P. Fatou Riemann sphere into sets that now bear
independently developed the theory of their name.
“Rational iteration” having Montel's

Normality Criterion as their m_e;in tool.

J

Pierre Joseph Louis Fatou (1878-1929) Gaston Maurice Julia (1893-1978)



Julia and Fatou sets

J(f) ={zeC : (fY) 1s not normal at z}
= {zeC : (f*) 1s normal on no open set containing z}

F() = C\J()

= {zeC : (") 1s normal on some open set containing z}



Remarks

- F(p) 1s open, so J(p) 1s a closed subset of C.

- In a previous example, case 0 € U, the sequence (f*) was normal on no open
set containing the origin 0. Thus 0 € J(f).

- In the case 0 ¢ U 1t was shown that if z # o, (f*) 1s normal on some open set
containing z, thus z € F(f).

- We conclude that J(f) = {0} when f(z) = Az with |A| > 1, a rather

uninteresting Julia set. In case |A|<1, (f*) 1s normal at every point of the
plane, thus J(f) = &.

- Consequently, Julia sets of polynomials f(z) = az + b will not be considered
further.



Discrete dynamic systems

- For every keN, we abbreviate as f* the k-fold composition fo fo -0 f,
where [0 1s the 1dentity function.

- Let (X, p) be a metric space and let f: X — X be a transformation. An
iterative scheme {f*} is called a discrete dynamic system.

- The forward orbit of a point xeX is the set
O*(x) = {f*"(x) : n 20, f°(x) = x}.



Rational functions

- A rational map R: C — C is of the form R = P/ ), where P and @

are polynomials without common factors and so without
common roots.

- The degree of R 1s defined by
deg(R)=max{deg(P),deg(Q);}.
- How 1s R(0) defined?



On quadratic polynomials

- A quadratic polynomial q(z) = az? + 2bz + d (a # 0), where a, b, d € C may
be reduced by an affine change of coordinates ®(z) = az + b (a # 0) to the
form

p(2) =z* +c,
where ¢ = ad — b + b.
- In order to understand the dynamics of all complex quadratic polynomials ,

1t 1s enough to study the class of quadratic polynomials of the form z > 22 +
c, c € C.



Example

- Let f(2) = 22; then, for z € C,
f(z)=z2".

- f1(z) for |z| > 1 tends to infinity, whereas for |z| <1 tends to zero.
- These two subsets of C are separated from the unit circle S*.
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Example

Attractive point ™

The point 0 + j*0 attracts
the internal points of the
unit disc.

a)c=0+1*0, b) c =-0.1 +:1*0.1.



Classification of periodic points

- A fixed point a of a rational function R is repulsive, indifferent
or attractive depending on whether | R'(a)| 1s greater than,
equal to or less than one.

-z = 1s a (super)attracting fixed point of p.



Critical points and poles

- Critical values of a function R are those u for which R(z) = u has
a multiple root. Such solutions are called critical points of R and
they are computed equivalently from R '(z) = O.

- Let £2 be an open subset of C, a2 and f: £ \{a}—>C be a

holomorphic function. If
lim f(z) = oo,

z—>a

then a 1s called a pole of f.
- E,(2) = Ae?, AeR does not have critical points.



Theorem of Fatou

If R(2) 1s a rational function having an attracting cycle,
then at least one critical point will converge to it.



Quadratic polynomials

- The forward orbits of the critical points of a rational map determine the
general features of the global dynamics of the map



Julia sets of quadratic polynomials

- In what follows, p.(z) = 22 + ¢, where z, c € C and J(p,) = /..

- p, has at most one finite attractive fixed point or attractive cycle.
- If lim p/ (0) # oo, then </, 1s connected.

- If Elz p.(0) =00, then <J, 1s totally disconnected.



W
Julia sets for 22 + 0,7885 e, a € [0, 2m7)




San Marco dragon

c =-3/4



Quasi self-similarity

A looser form of self-similarity; the fractal appears approximately (but not
exactly) identical at different scales.

=0.48

0.7
0.4 0.6 0.8 1 1.2 1.4 0.9 1 .1 1.z 1.3 5.4 1.2 1.2% 1.3 1.% 1.4

c=-0.5+0.51



The basin

- The basin of attraction of an attractive fixed point a is the open
set _
A(a) = {z eC :limR"(z) = a}.

k—o0

- The Julia and Fatou sets are J(R) = 0A(a) and F(R) = C\J(R),
respectively.

Hudid )




The Mandelbrot set

- The Mandelbrot set was originally defined as the set of points ¢ for which
the Julia set 1s connected.

- It comes as a surprise that this is exactly the set of points for which p*(0)
does not tend to infinity as n—o.




..
Douady-Hubbard

The M set 1s connected




. . A
Applications

- Biology

- Botany

- Chemistry

- Computer Science (Graphics, Vision, Image Processing and Synthesis)
- Geology

- Mathematics

- Medicine

- Physics



Fractal in Computer Graphics

- Fractal methods have proven useful for modelling a very wide variety of
natural phenomena.

- In graphics applications, fractal representations are used to model terrain,
clouds, water, trees and other plant life, feathers, fur, and various surface
textures, and sometimes just to make pretty patterns.

- In other disciplines, fractal patterns have been found in the distribution of
stars, river i1slands, and moon craters; in rain-field configurations; in stock
market variations; in music; in traffic flow; in urban property utilisation;
and 1n the boundaries of convergence regions for numerical-analysis
techniques.



Classification

- Self-similar fractals
- Have parts that are scaled-down versions of the entire object
- Can use different scaling factors for different parts
- Statistically self-similar, if random variations are applied
- Commonly used to model trees, shrubs, plants

- Self-affine fractals

- Have parts that are formed with different scaling parameters (sx, sy and sz) in different
coordinate directions.

- Statistically self-affine, if random variations are used
- Commonly used to model terrain, water and clouds

- Invariant fractal sets
- Formed with nonlinear transformations

- Self-squaring fractals, e.g., the Mandelbrot set
- Self-inverse fractals
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