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Structure of the presentation
➢ Time series analysis-univariate

➢ Phase space reconstruction methods
Recurrence plots

➢ Complex networks

⚫ Visibility Networks

⚫ Online change point detection

➢ Bubble detection

➢ Time series prediction using neural networks

➢ (applications will be presented)



Time series

➢ An observed dynamical system 

 (simulated / experimental / field measurements)

   results in observables varying in time

➢ In physics, engineering, environmental, finance 

systems, we are aware of system monitoring

➢ Do time series contain information about the 

underlying system dynamics that can be useful?



Case 1: Known equations

)xσ(x
dt

dx
12

1 −= 3121
2 xxxrx

dt

dx
−−=

321
3 bxxx

dt

dx
−=

x1(t) x2(t)

x3(t)



Case 2: We don’t know the detailed equations
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Unfortunately nature

  is in general more complex

 and in general non-linear

Statistics does not contain all information

about the system dynamics

methods from dynamical systems can provide 

insight such as phase space methods



What you already know to do

Statistical analysis mean value, standard deviation, skewness, kyrtosis

The problem is that statistical analysis 

  gives the same results for different temporal variations

Just order the data → 

same statistic but..



Phase Space: 

Example (1) - Pendulum

Known Dynamical System → Time Series
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Example (2)
Known dynamical system Lorentz system (chaotic)  time series

x1(t) x2(t)
x3(t)

Phase space



Example Lorentz (cont’d)

Phase space variation due to variation of the r parameter (2-D projections)

Point attractor Periodic orbit Chaotic (strange) 

attractor

Geometry can help detect transitions!



Inverse problem
Known time series – unknown dynamical system

Traffic volume at given position



What can be the results of the analysis?

➢ Elements of system dynamics: 

characteristic times/scales of the underlying system

➢ System Identification, Change of State

➢      Prediction of future values

➢ System Control



Time and Geometry

in asymptotic behavior of the system in time →∞



Point attractor

Time series Phase space
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Toroidal attractor

Time series Atrractor
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Examples of Analysis  



Phase space reconstruction

DΣυνθήκη m≥2D

(reconstructed 

state space)

Original 

phase space

Observed 

time series

Embedding

The invariant quantities of the two spaces must remain the same

Kugiumtzis 1999



x1(t)                    x2(t) x3(t)

Phase space of the Lorenz system

Knowing just one tme series can we reconstruct the phase space????



Phase Space Reconstruction

➢ We are interested in 

metric (topological) properties such as the dimension of the attractor

➢ It is not necessary to reconstruct the full phase space since in the 

majority of cases the system presents an attractor with smaller 

dimension

⚫ The reconstructed phase space has the following properties

– Each point is mapped through the dynamics to a unique successive point

– There is a smooth and nonsingular transformation between the 

reconstructed space and the original space.

– This methodology was introduced by Packard et al (1980) and Takens 

(1981)



Phase Space Reconstruction: Method of Delays

➢ The reconstruction of the phase space is done via the construction 

of a   m-dimensional vector states Si from the time series xi
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➢ Parameters necessary for the reconstruction

⚫ Α) embedding dimension m (in what space I plot my points)

⚫ Β) time delay τ (how close the timeseries points are)



Nonlinear temporal Tools: Average Mutual information 
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where for some partition on the real numbers, pi is the probability to 
find a value in the i-th interval, and pij(t) is the joint probability that an 
observation falls into the i-th interval and time t later falls into the j-th. 

• AMI takes into account nonlinear correlations between successive 
measurements 

• If I(τ) has a marked minimum at t=td, then it is argued that td is a 
reasonable choice of time delay for embedding in phase space
reconstruction

Linear temporal tool: Autocorrelation function
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Choice of time delay:

Autocorrelation function (AF)

➢ We choose the time τ for which AF is zero for the first time.

➢ If AF does not fall to zero quite fast we chose as τ the time for 

which it falls to 1/e (approximately 40%) of the value for τ=0.

➢ Remember: AF takes into account only linear correlations 

between successive points of the time series.



23

Example of choice of τ

➢ Lorentz system (only one component)



Choice of embedding dimension m

Takens’ theorem sets the condition m≥2D+1 where D is the attractor 

dimension.

Other researchers set a more loose condition: m≥D

If we choose small embedding dimension m the attractor will be 

“squeezed” and will present self crossing, thus not being equivalent to 

the original attractor.

If the embedding dimension is larger than what is necessary the 

corresponding calculations will be unnecessarily more complex and 

time consuming.



Method of False Nearest Neighbors

At small embedding dimension the attractor's points are quite close and points 

A, B and C seem to be neighbors. 

Embedding dimension m Embedding dimension m+1

Increasing the embedding dimension by +1 point C remains neighbor of point A 

However point B moves away from the neighborhood of point Α.

Thus point B is a false nearest neighbor of point A. In contrast point C is a true 

neighbor of point A. 

The principle of the method (Abarbanel 1993)



Method of False Nearest Neighbors

Application to the Lorenz system



Choice of reconstruction parameters:

time delay and embedding dimension

Kugiumtzis 1999



SYSTEM-ATTRACTOR DIMENSION

➢ We suppose that the system possesses a low dimensional attractor

     i.e. for large times the system converges towards an attractor

➢ It is not necessary to know the dimension (d) of the full phase space 

but only the dimension of the subspace (D) that contains the attractor

➢ We are going to see how we can estimate the dimensionality of the 

system through the time series analysis. 

➢ Notice: In the case of chaotic systems the dimension D of the attractor 

in general is not an integer since the attractor is a fractal object..

The basic principle of the methods

We embed the time series with increasing embedding dimension

With the aim to see if we have any convergence

Of the object that is formed (hopefully the attractor).



Correlation Dimension (1)

➢ An attractor is a set of points xi and let P(|xi-xj|<r) the probability of 

two points of the attractor to be within a distance smaller than r.

➢ If C(r) is the number of points that are located within a hypersphere 

of radius r centered on point xi, then the average time <Ν(r)> 

approximates well the above probability. 

➢ Then one expect to have a scaling law 

𝐶(𝑟) ∝ 𝑟𝜈

➢ i.e. in fact the probability that two points of the attractor lie within  

a distance r is proportian to the power of a distance, with a 

constant exponent ν. This relation is valid for r→0.



Correlation dimension (2)

• Suppose that the object is formed from N points in an embedding space

(lets suppose 2).

• This can be seen also as a graph of pairs (2-d reconstructed vectors) 

(Χn, Xn-1) i.e. delay τ=1).

• Lets consider a points as an origin an design a circle of radius r around this 

point and measure the number of points within the circle. We apply the 
process for circles of various sizes for all the points.

𝑁 ∝ 𝑟1 𝑁 ∝ 𝑟2



Correlation Sum (1)

➢ <C(r)>  for  a set of points xi i=1,..N as it is the reconstructed 

trajectory from the time series can be estimated from the correlation 

sum C(r).
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➢ C(r) counts all the possible pairs of points (xi, xj)  of the 

reconstructed trajectory, that are located within a distance r, for a 

given embedding dimension. 

➢ i.e. in fact C(r,m).



Correlation Sum (2)
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➢ the two limits (Ν→∞ και r→0) cannot 

be satisfied for a real time series since 

it has a finite length and the data are 

of finite precision.

➢ In practice we expect that the graph 

LogC(r) vs. logr results in a straight 

line for a given width of relatively small 

values of r. This region is called 

scaling region.

➢ In general ν is denoted as D2.



Example of estimation of correlation dimension

Lorentz system in the chaotic region

τs=0.1s, τ=2τs

Scaling region: -0.5< logr <1

D2 close to 2

Kugiumtzis 1999



EMBEDDING vs ATTRACTOR DIMESNION

➢ When we have a white noise (stochastic) process then the dimension of 

the object formed is practically the same as the embedding dimension, 

since the system visits with the same probability all the available (or 

nearly all) points of the phase space.

➢ In the case of a deterministic system if there is an attractor the 

dimension will converge toward a value D smaller than the dimension d 

of the phase space

Embedding 

dimension
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Turbulence Fluid Complexity

Large Number of Environmental and Engineering Application of 
Turbulent jet flow



Recurrence Plots
▪ step 1: Phase Space Reconstruction

▪ step 2: Calculate the distances between the state vectors

▪ step 3: Set a cut off value  ε for the distance
which are within a distance ε are defined as recurrent points
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Several characteristic structures 

 can appear in a  R.P.

➢ Single isolated points 

(homogeneity)

➢ Diagonal lines 

(Trajectory visits the same region of the phase space at different 

times. Maybe deterministic process)

➢ Horizontal, Vertical lines/clusters

(The state is trapped for some time)

➢ Periodic patterns 

(periodicities)

➢ White bands

(abrupt changes in dynamics)



Constructing Recurrence Plots

Periodic signal White noise
Signal with thrend 

and periods



Recurrence Quantification Analysis  

➢ Zbillut and Weber (1992)

➢ %recurrence (ratio of the number of recurrence points (pixels) to the total 

number of points (pixels) of the plot

➢ %determinism (number of recurrent points forming diagonal lines to the 

whole number of recurrent points)

➢ MaxLine (longest diagonal line segment)

➢ Trapping Time (average length of the vertical/horizontal  structures)
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Case 1 

Identify spatial variations

(spatiotemporal phenomena)

Case 2

 Identify transitions 

in the system evolution

Applications of Recurrence plots



Recurrence Quantification Analysis 

of MHD turbulent channel flow-Simulations

➢ Recurrence Plots (RPs) and Recurrence Quantification Analysis (RQA) of 

time series of velocities in low-Reynolds-number magneto hydrodynamic 

turbulent channel flow.

➢ Flow simulated using a fully spectral code with Fourier and Chebyshev 

decomposition in the periodic and wall bounded directions, respectively. 

Direct numerical simulations, for 𝑅𝑒𝜏 = 180, based on the friction velocity 
and the channel half-height, for the hydrodynamic flow  with a streamwise 

magnetic field.

➢ The velocity time series (with and without magnetic field B) of the flow were 

recorded at several positions in the wall-normal direction and analyzed 

along all directions using RPs and RQA.

➢ Several distinct system regimes were identified and the effect of the 

magnetic field was localized. 

A.D. Fragkou, T.E. Karakasidis, I.E. Sarris, Physica A (2019)



Turbulent channel flow-Simulations



Fragkou, A. D., Karakasidis, T. E., & Sarris, I. E. (2019). Recurrence quantification 

analysis of MHD turbulent channel flow. Physica A, 531, 121741.

Turbulent channel flow-Simulations



u velocity component

a) y=-0.99812, b) y= -0.94561 c) y= -0.89867 d) y= -0.76517,

No B

with B

Close to the wall Intermediate 

distance



u velocity component

No B

with B

Towards the centerline

e) y= -0.64383,            f) y= -0.37132,               g) y= -0.20711     h) y= -0.012272.



the u velocity component RPs

a) y=-0.99812, b) y= -0.94561 c) y= -0.89867 d) y= -0.76517,

No B

with B

Close to the wall Intermediate 

distance



the u velocity component RPs

e) y= -0.64383,            f) y= -0.37132,               g) y= -0.20711     h) y= -0.012272.

No B

with B

Towards the centerline



Some reminders from fluid dynamics

Close to the walls 

we have creation of streak structures which travel towards the center of the channel 

and they finish their trajectory in the fully developed turbulence region.

This affects the fluid region close to the walls for a long time while their effect in the 

central region is short in time (large values of Trapping Τime close to the walls and 

small values of Trapping time in the central region).

 
In the center of the channel:  we expect to have fully developed turbulence 

coalescence of vortices very fast  → the corresponding fluid layers will lose memory 

faster and their velocities become more uncorrelated (large white areas in the RPs) 

compared to the regions close to the walls, while we have small parallel lines in the 

RPs and of the parameters %DET, maximum diagonal line from RQA).



V velocity component

a) y=-0.99812, b) y= -0.94561 c) y= -0.89867 d) y= -0.76517,

No B

with B

Close to the wall



the v velocity component RPs

a) y=-0.99812, b) y= -0.94561 c) y= -0.89867 d) y= -0.76517,

No B

with B

Close to 

wall

Close to 

wall



RP quantitative results results with no magnetic field

➢ A three-regime behavior in u component (along the flow)

(-1<y<-0.85,  -0.85<y<-0.65, -0.65<y<0), values decreasing gradually from 

one region to the other but with different slops in general. 

➢ A two-regime behavior in v, w (perpendicular to the flow) 

(-1<y<-0.65 and -0.65<y<0)



close to the wall (𝑦 = −0.99812) 

a) we have the viscous layer where diffusion phenomena are important with increased 

molecular viscosity due to molecular diffusion.

b) we have the creation of vortices which move towards the center of the channel. 

➔ the correlation of states is more pronounced close to the wall 

➔ in contrast towards the center of the channel we have less memory effects due to 

the multiplicity of events of vortices destruction as well the multiplicity of 

coexistence of vortices of various sizes and characteristic times

RP quantitative results with no magnetic field



Comparison with and without B

The presence of the magnetic field extends this region towards the center of the 

channel and modifies the behavior of the transition region where turbulence and 

molecular diffusion effects are present.

The magnetic field enhances the effect of the molecular diffusion for the u and w 
component. 

In fact these two directions are expected to be affected by the magnetic field since it 

will produce movement of particles in the direction normal to the plane formed by B 

and u. thus affecting significantly the u direction since they will tend to provoke a 

motion in the plane normal to the u direction affecting thus the w and v components. 



Comparison with and without B

Close to the wall the system stays close to given state for longer times (streakcreatin 

and propagation)

While close to te center where we have fast coalescence the system looses fster 

memory



Summary MHD channel

We observe an important effect of the magnetic field along the flow and more 

specifically that the system becomes more “deterministic” (with larger values of 

parameters %DET, maxline) in comparison with the case without magnetic field. 

The variations of the velocity present also smaller fluctuations compared to the case 

of absence of magnetic field. 

The effect of the field is pronounced up to < −0.5 . We believe thus that the magnetic 

field affects the streaks close to the channel walls since trapping time is increased 

compared to the absence of magnetic field.



Application on Traffic Data

Fragkou, A. D., Karakasidis, T. E., & Nathanail, E. (2018). Detection of traffic 

incidents using nonlinear time series analysis. Chaos, 28(6), 063108.



TRAFFIC DATA
Attica Tollway: metropolitan Highway 70 km long with 2 to 4 lanes each way
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Timeseries: number of cars

passing over sensor (volume)

(4320 points)

Sensors: count every 20 s

Aim of the study: Investigate the feasibility of incident detection by analyzing time 

series with RP and RQA methods



Timeseries  from 4 sensors

35573555

Separated in 4 Regions

36053604



Recurrence Plots S1

35573555

Separated in 4 Regions

36053604



Recurrence Plots S1 (explained)

Regions A (1-1100) and D (3200 – 4350): large amount of recurrent

points forming big deterministic lines, -> during those time periods the

traffic flow over the sensors was relatively homogeneous and the

corresponding volumes do not show any significant fluctuations

Regions B (1100-1800), C (1800 – 3200) : small diagonal lines and vertical 

white lines -> chaotic behavior with abrupt changes in the dynamics of the 

system. 

Interesting characteristic: (yellow arrow) in sensors 3555 and 3557 a 

vertical white line (t=2250) An incident causes an abrupt change in the 

system behavior. 

Same in sensors 3604 and 3605 at t=2550



Recurrence Quantification Analysis with epoqs S1

35573555

epoqs of 180 successive records each with time shift of 1. (epoq = one hour. Results of

Recurrence Rate

36053604



Recurrence Quantification Analysis S1 (explained)

Regions A and D, high values, (almost 0.98): during morning and night

hours volume fluctuation is smooth, without problems and possible

incidents that may disturb traffic conditions and system dynamics

Regions B and C, main characteristic: the alternation of maximum and 

minimum values of RR parameter (max – min alternations): fast change

affects the dynamics of the system 

why this big change happened during the middle day hours having in mind

the everyday normal traffic conditions during these hours.

abrupt change of the volume -> something happened on the traffic stream

and changed abruptly the system dynamics



Recurrence Quantification Analysis S1 finding local max and min

35573555

time points where RR has high values (local maximum) and time points where RR

has small values (local minimum)

36053604



RQA S1 finding local max and min (explained)

Region’s B and C biggest differences (green arrow):
sensor 3555 : t=2240

sensor 3557 : t=2251(nearest downstream sensor to the incident) more accurate location 

of the incident

sensor 3604 : t=2543 (further to the incident site) a time delay to locate any abrupt

change.

sensor 3605 t=2566 (further to the incident site), a time delay to locate any abrupt

change.

Incident S1 Position A28.5, time point t=2268  (time 12:35:40) 

Sensor 3555 3557 3604 3605 

Sensor position A28.00 A28.70 A29.30 A29.60 

Upstream (B)/ 

downstream (A) 

the incident 

B A A A 

t time point of 

incident 

detection 

2240 

(time 12:26:20) 

2251 

(time 12:30:00 

2543 

(time 14:07:20) 

2566 

(time 14:15:00) 

 



Conclusions

Recurrence Plots with epoqs → useful tool to detect dynamic state transitions

during the evolution of a dynamical system.

Quantification of RPs ( RR) → extra help on identifying those abrupt

changes in dynamics of the system.

Empowered our belief that those changes are due to incidents that

occurred during the time period of our data analysis.

Bigger value of the max – min alternations between successive values of

RR → allow us to find the time when the incident occurred and permits

us to discriminate it from the recurrent traffic congestion



“Analysis of turbulent heated jets complex 
network time series mapping”

Charakopoulos, A. Κ., Karakasidis, T. E., Papanicolaou, P. N., & Liakopoulos, A. (2014). The 

application of complex network time series analysis in turbulent heated jets. Chaos, 24(2), 024408.

Charakopoulos, A. K., Karakasidis, T. E., Papanicolaou, P. N., & Liakopoulos, A. (2014). Nonlinear 

time series analysis and clustering for jet axis identification in vertical turbulent heated jets. Physical 

Review E, 89(3), 032913.



Experimental set up

• Data from different sets of experiments with various initial conditions 

and circular and elliptical shaped nozzles

• Ambient water temperature ranged between 18.4-24.6 oC while the jet 

water temperature ranged between 58.6 to 61.4 oC

• Temperature data sampling frequency at 80Hz and 100Hz

 

Thermistors 

Jet axis 

Overflow 



Vertical heated jet

❖ Three region behavior 

➢ The first region corresponds to large distances from the jet axis, actually at the 

boundary with ambient water named boundary region (BR) 

➢ The second one, the inner region (IR), concerns the region between the 

boundary region and the core of the jet, 
➢ The third region, the jet axis region (JR), is the region near the core of the jet 

The dynamics of these regions are characterized by the presence of small- and 

large-scale structures (vortices)



Complex Networks

Transforming time series into Complex Networks 

Seems a promising 
technique

Can be further employed 
in the future for 
spatiotemporal analysis



Complex Networks

Some notions 

✓ A Network (graph) G=(V,E) consists of a set of nodes (V) that 

are interconnected with links or edges (E) 

✓ A Νetwork of N nodes can be described by the NxN adjacency 

matrix A=[aij]

aij=1 if  the link i – j exists,

aij=0 otherwise



Complex Networks and time series

Construction of the Complex Networks (Xiaoke Xu et. al (2008)

 
✓ Time series

✓ Embedding the time series in an 
appropriate phase space and take 
each phase space point as a node in 
the network

✓ Select a fixed number of nearest 
neighbors for each point (node) and 
connect each point with its neighbors 
to form a complex network

✓ Construct the adjacency matrix

✓ Construct the complex network 71



Complex Networks Time Series

Construction of the Complex Networks (L. Lacasa et. al (2008))

Visibility graph method: 

Let x(ti)i=1,…N  is the time series 
. 
Two nodes x(ti) and x(tj) in the time series 
have visibility and become two connected 
nodes in the associated graph, if any other 
data (tk, x(tk)) placed between them 
(ti<tk<tj) fulfills

( ) ( ) ( ( ) ( )) k i
k i j i
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t t

x t x t x t
t t

−
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−

i and j are connected if one can draw 
a straight line in the time series 
joining the two points i and j, such 
that, at all intermediate points 
(ti<tk<tj), x(tk) falls below this line



Complex Networks

Properties of  Complex Networks 

✓ Shortest path (dij): Corresponds to the minimal distance between 

all paths that connect nodes i and j 

      dij  is the red line  (3) and 

       not the green one (4) 

✓ Average path length (l): Is the average number of steps along the 

shortest paths for all possible pairs of network nodes. It measures 
the efficiency of information or mass transport on a network.
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Complex Networks

Properties of  Complex Networks 

✓ Diameter (D): The maximum length between all shortest paths 

     D=max(dij)=3

✓ Degree (Ki): The degree Ki of a node i is the number of connections 

of the  node to other nodes

     K1=2, K2=2, K3=5, K4=1, K5=2, K6=4

i j

1

62

4
5

3



Complex Networks

Important properties of  Complex Networks 

✓ Degree distribution: P(k) of a network specifies the fraction of 

nodes having exactly degree k 

✓ Clustering coefficient: Ci is the ratio between the number of links E 

connecting the nearest neighbors of i and the total number of 

possible links between these neighbors. 

                                   Ki =5,  ei=3

       Ki is the degree of i, ei is the number of links directly connecting   neighbors of i

     The clustering coefficient of a network C is the average of Ci over   

all nodes
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Complex Networks properties

✓ Modularity (M): a measure of the 

structure of a network. It 

measures the strength of division 

of a network into modules (also 

called groups, clusters or 

communities). 

✓ Networks with high modularity 

have dense connections between 

the nodes within modules but 

sparse connections between nodes 

in different modules.

Newman M E J PNAS 2006;103:8577-8582



Complex Networks: Results

Near the boundary Near the jet line

Different structure



Complex Networks: Results

➢ Visibility method

✓ Peak of the value are due to the interaction of small heated eddies to the bigger 
vortex 

✓ Throughout the development of the time series if there exists a peak and the 
previous and next value would not be located very close this data tend to have 
higher degree than the other data.

✓ At the network each point represented as a hub with different degree

✓ Physically this means that at these points we have a strong influence of a heated 
vortex to less heated fluid



Complex Networks: Results

Case 1

Location of time series at horizontal axis

In the jet axis region : fully developed turbulence → increased presence of  
short-lived small scales → change of states occur faster → successive states 
are less linked

As we move towards to boundary large scale longer living structures persist 
→ change of states take more time to occur

Jet axis

Lowest values of

Diameter : The maximum length between 
all shortest paths
Average path length (l): average number of 
steps along shortest paths for all possible 
pairs of network nodes



Complex Networks: Results

Case1

Location of time series at horizontal axis

Jet axis

Clustering coefficient: Ci is the ratio between 
the number of links E connecting the nearest 
neighbors of I and the total number of 
possible links between these neighbors.  

Due to presence of short lived small 
structures connections between successive 
sates are reduced compared to regions where 
long-lived structure persist.

   

Modularity (M): a measure of the structure of a network. It measures the 
strength of division of a network into modules (also called groups, clusters or 
communities). 
Short live structures result in fewer well defined separations. More 
interconnections are present.



Other Cases- Diameter and Average path length 

Jet axis

✓ Diameter (D): The maximum length 
between all shortest paths 

✓ Average path length (l): Is the average 
number of steps along the shortest 
paths for all possible pairs of network 
nodes. It measures the efficiency of 
information or mass transport on a 
network.

Case Study Shape of 

nozzle

Measurement station 

attributed to the jet axis 

using the clustering 

procedure (present study)

Estimated 

location of jet 

axis using a 

Gaussian fit 

Round 38.25 37.75

Results of jet axis location using our methodology and comparison with 
estimations from hydromechanics methods



Conclusions

Aim: Distinguish the jet axis region from the regions near the boundary (ambient 
water) and the intermediate regions

✓ Various measures can provide information about various regions of the jet as well 
as about the location of the jet axis

✓ Using a combination of all the measures along with a clustering procedure can 
discriminate far better various regions of the flow based on a different behavior 
and lead to a methodology for obtaining the location of jet axis

✓ Analysis is capable of extracting information and can be useful for a more clear 
discrimination of the time series near jet axis from others that correspond to the 
region near the boundaries

✓ This methodology seems quite promising for application in complex flows, as well 
as in applications where several different state zones exist in a physical system 
where one can have access only to spatiotemporal data

✓ The time series derived from different regions along the horizontal line, exhibit 
different topological features of the network



“Backward Degree: a new index for 

online and offline change point detection 

based on complex network analysis”

Charakopoulos, A., & Karakasidis, T. (2022) Physica A, 127929



Visibility algorithm for complex network construction (Lacasa et al. 2008)

Degree of a node=number of connections with other nodes



Input a time series   X(t);

Input the parameter n;

Calculate First differences DX(t)

Absolute value of DX(t) in case of 

increase detection

Abs{ DX(t)}

Zero negative values of DX(t) in the 

case of decrease detection

Z{ DX(t)}

Convert Abs{DX(t)} or Z{ DX(t)} to a 

graph 

G(nxn);

Backward Degree Metric BDM;

Moving average and moving 

standard deviation of the BDM

 

BDMma; &BDMmstd;

Define the Backward Degree Index BDI=BDMma+BDMmstd;

Calculate sum of mean BDI plus 

twice standard deviation of BDI

BDIquant=mean 

(BDI)+2*std(BDI);

Test whatever the index satisfies the 

criterion. 

If  BDI> BDIquant then 1

If  BDI< BDIquant then 0



Online detection of sudden events





S&P500 close market index from January 2007 and December 2013 and the corresponding 

points, marked with green rectangular, where the method detects as abrupt decrease points

Charakopoulos, A., & Karakasidis, T. (2022) Physica A, 127929.



Charakopoulos, A., & Karakasidis, T. (2022) Physica A, 127929.

Bitcoin price index from January 17 to August 18. 



Bubble detection in Greek 
Stock Market:

An approach with the DS-LPPLS Model

K Papastamatiou, T Karakasidis, Physica A: 587, 126533



Methodology

• A network of participants influenced by their "neighbors"

• Local mimetic behaviors of stockbrokers

• Universal cooperative behavior causes collapse

• Values are determined by the properties of the system

• Super exponential distribution 

𝒑 𝒕 = 𝑨 + 𝑩 𝒕𝒄 − 𝒕 𝜷 𝟏 + 𝑪 𝐜𝐨𝐬 𝝎 𝒍𝒏 𝒕𝒄 − 𝒕 + 𝝋 ⇒

(Anders Johansen et al., 1999)

(Johansen & Sornette, 1999)

𝒑 𝒕 = 𝑨 + 𝑩 𝒕𝒄 − 𝒕 𝜷 + 𝑪𝟏 𝒕𝒄 − 𝒕 𝜷 𝒄𝒐𝒔 𝝎 𝒍𝒏 𝒕𝒄 − 𝒕 + 𝑪𝟐 𝒕𝒄 − 𝒕 𝜷 𝒔𝒊𝒏 𝝎 𝒍𝒏 𝒕𝒄 − 𝒕

Positive bubble: A transient non-sustainable period in a stock market, where 

the present value of an asset exceeds by far its fundamental value due to the 

fact that there is excessive demand. (overpriced assets)



Indicators

• DS LPPLS Confidence is the fraction of fitting windows,

    𝐶𝑜𝑛𝑓 . 𝐼𝑛𝑑. =
𝑁𝑓

𝑁
• 𝑁𝑓 number of the fittings which satisfy condition 1 of table (1), 

• 𝑁  total number of fittings in the selected window

Confidence Indicator gives a measure of the sensitivity of the observed 
pattern at a given time scale 𝑑𝑡.

• DS LPPLS Trust, is the median level of the fraction among the synthetic 
time series generated that satisfy the filtering conditions 2 of table (1). 
It measures how closely the theoretical LPPLS model matches the 
empirical time series.

(Fantazzini, 2016)

(Sornette & Cauwels, 2015)



Methodology

• Rolling window of 400 days

• 𝑝 𝑡 = logarithmic value of Index (or stock)

• 𝑡1 = starting date of 

• 𝑡2 = ending time of the rolling window

• Δ𝑡 = time step of the rolling window

• 𝑡𝑐 = estimation of the critical time (burst for positive, rebound for 
negative)



Positive Bubble 2p

𝒕𝟐 𝒕𝒄

𝒕𝒄 = 08/05/2006

ATHEX=4316.98

𝒕𝟐
=28/02/2006

 𝑪𝒐𝒏𝒇. 𝑰𝒏𝒅. = 𝟎. 𝟕𝟖



Positive Bubble 4p

𝒕𝟐 𝒕𝒄

01/08/2007, ATHEX=5143

𝒕𝟐
=01/11/2007

 𝑪𝒐𝒏𝒇. 𝑰𝒏𝒅. = 𝟎. 𝟓𝟒



Positive Bubbles

𝒕𝒄𝒕𝟐



APPLICATION OF DEEP LEARNING 

AND CHAOS THEORY FOR LOAD 

FORECASTING IN GREECE

• Stergiou, K., Karakasidis, T.E. Application of deep learning and chaos theory for load 

forecasting in Greece. Neural Comput & Applic (2021). 

https://doi.org/10.1007/s00521-021-06266-2

https://doi.org/10.1007/s00521-021-06266-2


Electricity and load consumption

• Predicting electricity / load consumption is of great importance

• Modern societies increasingly dependent on electricity

• Task → Minimize the energy waste → lead to the optimization of smart grids

• Forecasting load consumption → manage the production

• Short term forecasts → information to those involved with the energy markets

Medium / Long term forecasts → information for the system operators  



Neural Network Models

• FNN (Forward Neural networks) 

total input calculation: 

    z = w1 
∙ x1 + w2 

∙ x2 + …… + wn∙ xn +b

 

    total output calculation: 

    y = f(z) = f(w1 ∙ x1 + w2 ∙ x2 +……+ wn ∙ xn + b)     

x = input

w = weights

b = bias 

y = ouput !!! NO FEEDBACK 

COMMUNICATIONS BETWEEN 

THE LAYERS !!!



Neural Network Models (2)

• LSTM - Long Short-Term Memory Network

•  → Recurrent Neural Networks (RNN’s) using temporal information of the input data

➢ Memory cell is a neuron structure of the LSTM that has the ability to store information.

➢ Input, output, and forget gate are responsible for the flow of information. 

➢ Every gate possesses an activation function

➢ To predict a value 𝑝𝑡 at time t, past samples of data must be propagated through the 

neural network {𝑝𝑡−𝑛, . . . , 𝑝𝑡−1 }. 
➢ Advantage of LSTM network : overcomes the vanishing gradient by using structures such 

as forget gates, for the optimization of the information transferred between memory 

cells. 



Neural Network Models (3)

• LSTM 

➢ Through the forgetting gate retains or rejects the information

➢ the gate generates a value which is between 0 and 1 for time t and t -1

➢ The value produced → multiplied by the hidden state at time t-1

➢ The generated information is stored, while the outputs from the processes have been 

multiplied



Neural Network Models (4)

• Bi - LSTM 

➢ The flow of information is two-way 

➢ Processing the data in both directions, with 

two separate hidden layers that are fed 

to the same output layer

➢ Computes the forward/ backward hidden 

sequences and the output sequence by 

iterating 

• the backward layer from t = T to 1 

• the forward layer from t = 1 to T 

• updates the output layer



Neural Network Models (5)

• GRU - Grating recurrent unit

➢ Improved framework based on RNNs

➢ Similar with LSTM model but consists of 

two gates (LSTM has three gates)

➢ Simpler to compute and implement

➢ Better results in small datasets



Evaluation Indexes

• RMSE (Root Mean Square Error)

➢ Standard deviation of the prediction errors

➢ How far data points are located from the resulting regression curve

𝑅𝑀𝑆𝐸 =
1

𝑛
𝛴𝑖=1

𝑛 (𝑦𝑖
𝑜𝑏𝑠 − 𝑦𝑖

𝑓𝑜𝑟
)2

• MAPE (Mean Absolute Percentage Error)

➢  Measure of prediction accuracy of a forecasting method

➢ Statistical measure of how accurate a forecast system is

𝑀𝐴𝑃𝐸 =
1

𝑛
෍

𝑖=1

𝑛

|
𝑦𝑖

𝑜𝑏𝑠 − 𝑦𝑖
𝑓𝑜𝑟

𝑦𝑖
𝑜𝑏𝑠 |



Lyapunov exponent

• Chaos → alternative cause of randomness → establishes a limit on long term – 

prediction / offers possibilities for short-term predictions

• Non – Linear Analysis → determination of the forecasting horizon

• Spectrum of Lyapunov exponents → indication of a system’s chaotic behavior

• Lyapunov exponents → Indicators of the divergence or convergence of two system 

trajectories in the phase space, initially close to each other

• At least one positive Lyapunov exponent → CHAOS

• Maximun Lyapunov exponent → Lyapunov Time → h = 1/λmax 



Safe Prediction Horizon

• Extract the maximum Lyapunov exponent 

(VRA software)

• Calculated the time delay τ = 4
• From False Nearest Neighbors diagram → 

embedding dimension extraction m = 8

• λmax = 0.1 > 0 (chaotic)

• h = 1/λmax = 10
• Feed the Lyapunov Time into the Neural 

Network

     models as sequence



Abrupt Areas



Abrupt Areas



Normal Areas



Normal Areas



Evaluation Indexes – DL (4) GRU

`

DL (4) GRU

1 - step 10 - step 20 - step

RMSE MAPE RMSE MAPE RMSE MAPE

+10 days +20 

days

+10 

days

+20 days +10 days +20 

days

+10 

days

+20 

days

+20 days +20 days

1st Abrupt region 113.82 262.5 1.08 2.55 331.15 513.5 4.80 6.40 707.42 8.15

2nd Abrupt region 192.45 137.91 1.80 1.10 380.71 343.20 5.01 4.68 450.12 6.50

1st Steady region 125.09 119.26 2.43 2.43 144.95 138.69 2.61 2.42 657.80 13.81

2nd Steady region 69.98 54.49 1.27 0.91 160.17 142.50 2.46 2.18 349.46 5.72

Evaluation Indexes for the Deep Learning – 4layers – GRU model



Evaluation Indexes – LSTM (4) GRU

Evaluation Indexes for the Deep Learning – 4layers – LSTM model

`

DL (4) LSTM

1 - step 10 - step 20 - step

RMSE MAPE RMSE MAPE RMSE MAPE

+10 days +20 

days

+10 

days

+20 

days

+10 days +20 

days

+10 

days

+20 

days

+20 days +20 days

1st Abrupt 153.40 301.71 1.60 3.17 322.71 528.40 4.79 6.44 678.57 9.11

2nd Abrupt 241.32 173.47 2.38 1.43 334.59 307.28 4.32 4.28 613.71 7.61

1st Steady 140.78 133 2.55 2.39 258.91 288.82 4.2 4.82 602.69 12.68

2nd Steady 68.60 51.05 1.11 0.72 235.56 196.62 3.77 3.11 388.32 5.87



Evaluation Indexes – Bi LSTM (4) GRU

Evaluation Indexes for the Deep Learning – 4layers – Bi LSTM model

`

DL (4) Bi LSTM

1 - step 10 - step 20 - step

RMSE MAPE RMSE MAPE RMSE MAPE

+10 days +20 

days

+10 

days

+20 days +10 days +20 

days

+10 

days

+20 

days

+20 days +20 days

1st Abrupt 134.65 284.16 1.21 2.81 360.34 482.79 6.44 7.00 750.69 9.30

2nd Abrupt 203.66 144.95 1.79 1.00 352.35 325.86 4.79 4.66 368.54 5.40

1st Steady 102.65 95.95 1.69 1.57 153.55 160.63 2.50 2.59 581.92 11.89

2nd Steady 43.51 31.49 0.89 0.80 220.04 201.54 3.64 3.29 427.46 6.57



General Conclusions

➢ Nonlinear methods seem to identify system transitions in 

time or in time and space 

➢ Indications of chaos in the systems studied 

➢ System dynamics are reflected on the R.P.

➢ Using RQA we can extract useful information about the 

dynamics of a system

➢ The methodology seems promising  for the study of  

spatiotemporal  and multiscale  phenomena in 

engineering and environmental sciences



Future Applications

➢ Analysis and predictions

⚫ Prices of energy assets, Prices of building materials

➢ Predictions of energy production from intermittent 

renewable energies

⚫ Correlations-causalitites with other parameters (eg. 

Temperature, wind…)

⚫ Spatiotemporal variation for energy stock market use

➢ Combine with machine learning methods

⚫ Neural networks

⚫ Symbolic regression: find equations from data

⚫ Physics-informed neural networks: A deep learning 

framework for solving forward and inverse problems 

involving nonlinear partial differential equations
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