
On quadrirational pentagon maps a

30th Summer School – Conference “Dynamical Systems and Complexity”. Calandra University

Camping, Halkidiki, 28/8/2024 – 6/9/2024

Pavlos Kassotakis

September 6, 2024

Department of Mathematical methods in physics, University of Warsaw, Warsaw, Poland

a
This research is part of the project No. 2022/45/P/ST1/03998 co-funded by the National Science Centre and the European Union Framework

Programme for Research and Innovation Horizon 2020 under the Marie Sk lodowska-Curie grant agreement no. 945339.

1



History/Introduction



John S. Russell and a “strange” wave

John Scott Russell 1808-1882

I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair of horses, when the boat suddenly stopped not so the

mass of water in the channel which it had put in motion; it accumulated round the prow of the vessel in a state of violent agitation, then suddenly

leaving it behind, rolled forward with great velocity, assuming the form of a large solitary elevation, a rounded, smooth and well-defined heap of water,

which continued its course along the channel apparently without change of form or diminution of speed. I followed it on horseback, and overtook it still

rolling on at a rate of some eight or nine miles an hour, preserving its original figure some thirty feet long and a foot to a foot and a half in height. Its

height gradually diminished, and after a chase of one or two miles I lost it in the windings of the channel. Such, in the month of August 1834, was my

first chance interview with that singular and beautiful phenomenon which I have called the Wave of Translation.

https://www.youtube.com/watch?v=wEbYELtGZwI
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Joseph Boussinesq

1842-1928

Diederik Korteweg

1848-1941
Gustav de Vries 1866-1934

� Bussinesq (1877), Korteweg and de Vries (1895).

The KdV equation

ut = uxxx + 6uux

u = u(x , t) : displacement at position x at the time t

ut =
∂u

∂t
, ux =

∂u

∂x
, uxxx =

∂3u

∂x3
.
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Zabusky and Kruskal (1965) Solitonic solutions of the KdV. Solitons

Martin Kruskal 1925-2006

Norman Zabusky 1929-2018

ut = uxxx + 6uux , (KdV )

� Assume that u(x , t) is invariant under {x , t} → {x − cδ, t − δ}, ∀δ
This solution depends on x , t necessarily as ξ := x + ct, and correspond to traveling

waves (to the left) with constant speed c.

� The travelling wave solution

u(x , t) = ϕ(ξ), ξ = x + ct,

satisfies the nonlinear 1st order ODE(
dϕ

dξ

)2

= b + aϕ + cϕ2 − 2ϕ3, (1)
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� This ODE could be realized as the energy of a Hamiltonian system with cubic

potential

E =
1

2
(ϕ′) + V (ϕ), V = ϕ3 − 1

2
(cϕ2 + aϕ), b = 2E .

� Assuming the boundary conditions ϕ, dϕ
dξ

, d2ϕ
dξ2 → 0 when |ξ| → ∞, we have

a = b = 0 and (1) has as solution

u = ϕ(ξ) =
1

2
c sech2 1

2

√
c(x + ct + δ), sech x =

1

cosh x
=

2

ex + e−x
,

� That is the wave of translations (soliton) that John Scott Russell observed

� The wave amplitude is exactly half of its speed c.
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Integrable systems, and their dimensionality

� 3D Kadomstev-Petviashvili (KP) equation

(ut + 6uux + uxxx)x ± 3uyy = 0

� 2D Korteveg de Vries (KdV) equation

ut + 6uux + uxxx = 0

� 1D Painlevé II (PII )

wxx = 2w 3 + xw + α
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Nonlinear superposition of the solutions

of the potential KdV equation



Nonlinear superposition of the solutions of the potential KdV equation2

� The potential KdV equation: wt = 6(wx)
2 − wxxx .

� Appears as the compatibility conditions of the following system of Riccati

equations1

w
(1)
t = −wt + 4[k1

4 + k1
2wx + (wx )2 + wxx (w (1) − w) + (wx − k1

2)(w (1) − w)2],

w (1)
x = −wx − k2

1 + (w (1) − w)2
,

(2)

� Using wxt = wtx , w
(1)
xt = w

(1)
tx we eliminate w to obtain the potential KdV

equation expressed in w (1).

� The system (4) is called Bäcklund transformation with parameter k1 for the

potential KdV equation

� We obtain an one-parameter family of solutions w (1) of a given PDE from a given

solution w

BTk1 : w
k17−→ w (1)

1Wahlquist, Estabrook, 1973
2is obtained from KdV by the substitution u = −wx
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� Starting with the initial solution w , we use the Bäcklund transformation and

obtain the solutions w (1) and w (2) corresponding to parameters k1 and k2. For

each of these solutions, we use the Bäcklund transformation (see figure) and

require w (12) = w (21). This will precisely determine the integration constants.

w (1)

w w (12) = w (21)

w (2)

k2k1

k2 k1

Bianchi commutativity diagram

� From the diagram we have the 4 Riccati

w (1)
x + wx = −k2

1 + (w (1) − w)2, w (2)
x + wx = −k2

2 + (w (2) − w)2,

w (12)
x + w (1)

x = −k2
2 + (w (12) − w (1))2, w (12)

x + w (2)
x = −k2

1 + (w (12) − w (2))2

� We can obtain a purely algebraic relation
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� We have

w (1)
x − w (2)

x = (w (1) − w)2 − (w (2) − w)2 + k2
2 − k2

1 ,

w (1)
x − w (2)

x = (w (12) − w (1))2 − (w (12) − w (2))2 + k2
1 − k2

2 .

� By eliminating the derivatives, we obtain the so-called ”Bianchi’s permutability

theorem,” or, as it is otherwise known, the ”nonlinear superposition of solutions”

of the potential KdV equation

Nonlinear superposition principle of the

potential KdV equation

(w (12) − w)(w (1) − w (2)) = k2
1 − k2

2 .

� So we can obtain the solution w (12) from w ,w (1),w (2), purely algebraic!
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w (1)

w w (12)

w (2) w (123)

w w (23)

w (3)

k2k1

k2 k3k1

k3k2

k3

k1

k2

Bianchi diagram of 3-soliton solution

� We can construct an infinite sequence of solutions to the potential KdV through

the nonlinear superposition principle

� E.g.

w (123) = w (2) +
k2

1 − k2
3

w (12) − w (23)

=
k2

1w
(1)(w (2) − w (3)) + k2

2w
(2)(w (3) − w (1)) + k2

3w
(3)(w (1) − w (2))

k2
1 (w

(2) − w (3)) + k2
2 (w

(3) − w (1)) + k2
3 (w

(1) − w (2))
.
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The lattice potential KdV equation



From nonlinear superposition principle to the lattice potential KdV equation

� Interpreting that the Bäcklund transformation introduces an additional discrete

independent variable3, i.e.

wm,n := w , wm+1,n := w (1), wm+1,n+1 := w (12), etc., m, n ∈ Z

� The nonlinear superposition of solutions is reinterpreted as a discrete equation..

The lattice potential KdV equation

(wm+1,n+1 − wm,n)(wm+1,n − wm,n+1) =p2
m − q2

n , pm :=k1, qn :=k2,

wm+1,n

wm,n wm+1,n+1

wm,n+1

(a) The lattice potential KdV equation as

an algebraic relation on a 2D-cell of the Z2

graph

wm+1,n−1

wm,n−1 wm+1,n

wm,n wm+1,n+1

wm−1,n wm,n+1

wm−1,n+1

(b) Fields in vertices of the Z2 graph

3Levi and Benguria 1980, Nijhoff, Quispel, and Capel 1983 11



� LpKdV is (alternating) translation invariant wm,n 7→ wm,n + (−1)m+nc, c a

constant.

� LpKdV re-written in terms of the invariants

xm+1/2,n := wm+1,n + wm,n, ym,n+1/2 := wm,n+1 + wm,n,

The lattice potential KdV equation as an edge system

xm+1/2,n+1 = ym,n+1/2 +
k2

1 − k2
2

xm+1/2,n − ym,n+1/2
,

ym++1,n+1/2 = xm+1/2,n +
k2

1 − k2
2

xm+1/2,n − ym,n+1/2
.

� We can associate the map R : CP1 × CP1 → CP1 × CP1

R : (x , y) 7→
(
y +

k2
1 − k2

2

x − y
, x +

k2
1 − k2

2

x − y

)
.
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� R serves as solution of the quantum Yang-Baxter equation

The quantum Yang-Baxter equation

R12 ◦ R13 ◦ R23 = R23 ◦ R13 ◦ R12

� Where Rij : X × X × X 7→ X × X × X , maps and X a set.

� The subscripts denote the sets where the map R acts non-trivially when is acting

on X × X × X

� For example

Rij : CP1 × CP1 × CP1 → CP1 × CP1 × CP1

R12 : (x , y , z) 7→
(
y +

a1 − a2

x − y
, x +

a1 − a2

x − y
, z

)
,

R12 : (x , y , z) 7→
(
z +

a1 − a3

x − z
, y , x +

a1 − a3

x − z

)
,

R12 : (x , y , z) 7→
(
x , z +

a2 − a3

y − z
, y +

a2 − a3

y − z

)
.
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Discrete traveling wave solutions4

� We consider functions x = xm,n on the Z2 graph with the periodicity

xm,n = xm+d−1,n−1, d ∈ {2, 3, . . . , n}.

� Or equivalently functions invariant under {m, n} 7→ {m + d − 1, n − 1}.

� Due to this periodicity, it follows that the dependent variable necessarily depends

on m, n as l := m + n(d − 1).

� So we have x = xl . This reduction constitutes the discrete analog of the traveling

wave reduction we saw for the KdV equation.

� Note: In the continuous case, this reduction yielded a family of ODEs of a fixed

order. Here, we have a family of difference equations (∆Es) whose order depends

on the integer d .

� E.g. for d = 3, we have

yl+1 + yl + yl−1 =
a

yl
+ b, a = c0l + c1 + c2(−1)l , l ∈ Z,

The discrete Painlevé I.

4Papageorgiou, Nijhoff, Capel 1990
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Recutting of polygons 5 and the lattice potential KdV equation

� Some integrable discrete dynamical systems can be constructed by repeating a

specific geometric construction

vi−1

vi

vi+1

ρi7−→ vi−1

vi v ′
i

vi+1

The recutting ρi moves the vertex vi to v ′
i . The other vertices are not affected

� ρ2
i = id for any vertex vi

� ρi ◦ ρj = ρj ◦ ρi for any two non-consecutive vertices vi , vj

� ρi ◦ ρi+1 ◦ ρi = ρi+1 ◦ ρi ◦ ρi+1, for any two consecutive vertices vi , vi+1

5Adler 1993
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vi−1

vi (xi , yi )

vi+1
ρi7−→ vi−1

v ′
i (x

′
i , y

′
i )

vi+1

� The angle ̂vi−1vivi+1 and the area of the corresponding triangle is preserved after

the recutting, so

−−−→vi−1vi · −−−→vivi+1 =
−−−→
vi−1v

′
i ·

−−−→
v ′
i vi+1,

−−−→vi−1vi ×−−−→vivi+1 =
−−−→
vi−1v

′
i ×

−−−→
v ′
i vi+1

� we obtain

ρi : ui 7→ u′
i = ui +

l2
i+1 − l2

i

¯ui+1 − ūi
,

where ui := xi + ıyi , ı
2 = −1, l2

i := (ui − ui−1)(ūi − ¯ui−1).

� It is related to lpKdV
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• Part B: On quadrirational pentagon

mapsa

aC. Evripidou, P. K, A. Tongas, arXiv:2405.04945, 2024



The pentagon (or fussion) equation

� Moore, G. and Seiberg, N. 1989: Conformal field theory

� Maillet, J. 1990: 3-dimensional integrable systems

1

2 R12 R23

R13

3

=

1

2 R23 R12

3

R12R13R23 = R23R12,

Pachner 2-3 move

� A set-theoretical version of the pentagon equation considers Rij as maps

Rij : X × X × X → X × X × X where X is a set.
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The pentagon equation and pentagon maps

� Conformal field theory, Poisson maps, Hopf algebras, triangulations of piecewise

linear 3-manifolds, Roger’s dilogarithm, . . . Discrete Integrable Systems

� Solutions of the set-theoretical version of the pentagon equation are called

pentagon maps6

Some discrete integrable systems can be naturally associated with pentagon maps.

� For example the pentagon map

SI : (x , y) 7→ (u, v) =

(
x

x + y − xy
, x + y − xy

)
is related to the Hirota-Miwa equation (discretization of KP)

τl+1,m,nτl,m+1,n+1 + τl,m+1,nτl+1,m,n+1 + τl,m,n+1τl+1,m+1,n = 0, l ,m, n ∈ Z

6Korepanov, Kashaev, Sergeev, Doliwa, Sharygin, Dimakis, Müller-Hoissen,

Catino, Mazzotta, Miccoli, Colazzo, Jespers, Kubat
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Equivalent forms of the pentagon equation

� The pentagon equation

R12 ◦ R13 ◦ R23 = R23 ◦ R12

� The reverse (or dual) pentagon equation

S23 ◦ S13 ◦ S12 = S12 ◦ S23, S := τ ◦ R ◦ τ

� The braid-pentagon equation

B12 ◦ B23 ◦ B12 = B23 ◦ τ12 ◦ B23, B := R ◦ τ,

where τ : (x , y) 7→ (y , x)
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• Mapping SI : (x , y) 7→ (u, v) is equivalent to the refactorization problem

A(u)B(v) = B(y)A(x),

where the matrices A and B respectively read

A(x) :=

(
1− x x

0 1

)
, B(x) :=

(
1 0

1− x x

)
,

• An alternative interpretation of the matrix refactorization problem is the following

parameter dependent associativity condition (M.-Hoissen 2023)

p ◦x (q ◦y r) = (p ◦u q) ◦v r ,

for p, q, r vectors in some vector space V.

• Then the above associativity condition for the binary operation defined by

p ◦x q := x p + (1− x) q,

delivers the map SI .
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• A geometric interpretation of the associativity condition is provided by a (62, 43)

configuration on the plane, the Veblen configuration

• The binary operation represents the collinearity of three points p, q, p ◦u q

q

p

r

p ◦u q

q ◦y r

p ◦x (q ◦y r) = (p ◦u q) ◦v r

The Veblen configuration (62, 43)

• The pentagon equation reads as a consistency condition on the Desargues

configuration (103) that contains five Menelaus configurations7

7Doliwa, Sergeev 2014
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A classification resulta

aC. Evripidou, P. K, A. Tongas, arXiv:2405.04945, 2024



Equivalence relation

• There is a natural equivalence relation on pentagon maps

Two maps R : X× X → X× X and S : X× X → X× X are called Möb equivalent if

there exists a bijection ϕ : X → X such that R ◦ (ϕ× ϕ) = (ϕ× ϕ) ◦ S .

• The equivalence relation preserves the pentagon equation

Let R : X× X → X× X be a pentagon map and S a Möb equivalent map to R. Then

S is also a pentagon map.

S12 ◦ S13 ◦ S23 = (ϕ−1 × ϕ−1 × ϕ−1) ◦ R12 ◦ R13 ◦ R23 ◦ (ϕ× ϕ× ϕ)

= (ϕ−1 × ϕ−1 × ϕ−1) ◦ R23 ◦ R12 ◦ (ϕ× ϕ× ϕ) = S23 ◦ S12,
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Quadrirational maps

• A map R : X×X ∋ (x , y) 7→ (u, v) ∈ X×X is called quadrirational, if both the map

R and the so called companion map (or partial inverse)

cR : X× X ∋ (x , v) 7→ (u, y) ∈ X× X, are birational maps.

Said differently, the birational map R = (u, v) is quadrirational if for any y ∈ X
(generic), the map u(., y) : x 7→ u(x , y) is birational and for any x ∈ X (generic),

v(x , .) : y 7→ v(x , y) is birational.

• In what follows X = CP1, which we identify with C ∪ {∞} with its usual operations.
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•Theorem8

Any quadrirational pentagon map R : CP1 × CP1 → CP1 × CP1, with R = (u, v) is

Möb equivalent to exactly one of the following maps:

u =
x

x + y − xy
, v = x + y − xy , (SI )

u = x , v = x + y − δxy , (Sδ
II )

u =
x

y
, v = y , (SIII )

u = x − y , v = y , (SIV )

where δ = 0, 1.

8C. Evripidou, P.K. and A. Tongas 2024
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•Sketch of the proof

Let R : (x , y) 7→ (u(x , y), v(x , y)), be a pentagon map

R12 ◦ R13 ◦ R23 = R23 ◦ R12 .

Then its components u, v necessarily satisfy the following relations

u(x , y) = u (u(x , v(y , z)), u(y , z)) , (3)

u(v(x , y), z) = v (u(x , v(y , z)), u(y , z)) , (4)

v(v(x , y), z) = v(x , v(y , z)). (5)

We immediately recognize that (5) says that v is an associative function.
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•9 If v : CP1 × CP1 → CP1 is a nonconstant associative rational function then there

exists a Möbius transformation ϕ : CP1 → CP1 such that ϕ−1 ◦ v ◦ (ϕ× ϕ) is equal to

x , y , x + y or x + y − xy .

For any of the representatives (except v(x , y) = x , that does not give quadrirational

maps) of associative rational functions above, we find all rational functions u that

satisfy the equations (3) and (4).

Because of the quadrirationality of R, the rational function u is of the form

u(x , y) = a(y)x+b(y)
c(y)x+d(y)

, where the polynomials a, b, c and d are at most quadratic in y .

9J. V. Brawley, S. Gao, and D. Mills 2001
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Discussion

� The inverse maps S−1
I−IV of the Theorem satisfy the reverse pentagon equation,

while the mappings SI−IV ◦ τ satisfy the braid-pentagon equation.

� The sets of singular points of the mappings SI−IV respectively are

ΣSI = {(0, 0), (∞, 1), (1,∞)}, ΣSδ
II
= {(∞, 1/δ), (1/δ,∞)},

ΣSIII = {(0, 0), (∞,∞)}, ΣSIV = {(∞,∞)2}.

� The results of the theorem can be extended to the non-abelian setting

u = x(x + y − yx)−1, v = x + y − yx , (SI )

u = x , v = x + y − δyx , (Sδ
II )

u = xy−1, v = y , (SIII )

u = x − y , v = y , (SIV )

where δ = 0, 1.
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� Mapping SI was firstly introduced in (Kashaev 1998) inside the context of

quantum dilogarithm. Furthermore, SI also results from the evolution of matrix

KP solitons (Dimakis, Müller-Hoissen 2018). The non-abelian form of SI that is

SI , arises as a reduction of the so-called normalization map (Doliwa, Sergeev

2014). Mapping Sδ
II (in an equivalent form) first appeared in (Kashaev, Sergeev

1998).

� There is the degeneration diagram

S1
II S0

II

SI

SIII SIV

Degeneration diagram
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Conclusions/lets go back in history

(maybe 60-70 generations)



Μενέλαος ὁ Ἀλεξανδρεύς 70 - 140. Σφαιρικά
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Menelaus theorem

� Let A,B,C be the vertices of a triangle and D,E ,F be three points on the

(extended) edges of the triangle opposite to A,B,C respectively. Then, the

points D,E,F are collinear if and only if

AF

FB

BD

DC

CE

EA
= −1,

where PQ/QR denotes the ratio of directed lengths associated with any three

collinear points P,Q,R.

A

C

F

E

B

D

The Veblen or Menelaus configuration (62, 43)
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Σας ευχαριστώ!
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