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History/Introduction



John S. Russell and a “strange” wave

John Scott Russell 1808-1882

I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair of horses, when the boat suddenly stopped not so the
mass of water in the channel which it had put in motion; it accumulated round the prow of the vessel in a state of violent agitation, then suddenly

leaving it behind, rolled forward with great velocity, assuming the form of a large solitary elevation, a rounded, smooth and well-defined heap of water,
which continued its course along the channel apparently without change of form or diminution of speed. I followed it on horseback, and overtook it still
rolling on at a rate of some eight or nine miles an hour, preserving its original figure some thirty feet long and a foot to a foot and a half in height. Its
height gradually diminished, and after a chase of one or two miles | lost it in the windings of the channel. Such, in the month of August 1834, was my

first chance interview with that singular and beautiful phenomenon which | have called the Wave of Translation.

https://wuw.youtube.com/watch?v=wEbYELtGZwI


https://www.youtube.com/watch?v=wEbYELtGZwI
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Diederik Korteweg (N9

Joseph Boussinesq 1848-1941

1842-1928

Gustav de Vries 1866-1934

e Bussinesq (1877), Korteweg and de Vries (1895).

The KdV equation

Ut = Uxxx + OULx

u=u(x,t): displacement at position x at the time t

du ou A3u
ug = —, Ux = S —=5

at T ox’



Zabusky and Kruskal (1965) Solitonic solutions of the KdV. Solitons
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Ut = Usxx + buux, (Kd\/)

e Assume that u(x, t) is invariant under {x,t} — {x — cd,t — 6}, V4§
This solution depends on x, t necessarily as £ := x + ct, and correspond to traveling
waves (to the left) with constant speed c.

e The travelling wave solution
u(x,t) = ¢(§), &=x+ct,
satisfies the nonlinear 1st order ODE
do

2
aey _ D _ 58
<d£> = b+ ap+ cd® — 2¢°, (1)



This ODE could be realized as the energy of a Hamiltonian system with cubic
potential

E=2(#)+V(9), V=¢—(c*+ap), b=2E.

2
Assuming the boundary conditions ¢, ‘;—‘é’, ZTf — 0 when |£] — oo, we have

a= b =0 and (1) has as solution

1 2
coshx  e<+4 e’

u=¢&) = %c sech’ %\/E(er ct+96), sechx =

That is the wave of translations (soliton) that John Scott Russell observed

The wave amplitude is exactly half of its speed c.



Integrable systems, and their dimensionality

e 3D Kadomstev-Petviashvili (KP) equation
(ue + 6uux + Usoc)x £ 30y, =0
e 2D Korteveg de Vries (KdV) equation
ur + 6uux + uwx =0

e 1D Painlevé Il (Py)

WXX:2W3+XW+Oé



Nonlinear superposition of the solutions
of the potential KdV equation



Nonlinear superposition of the solutions of the potential KdV equation?

e The potential KdV equation: w: = 6(wx)? — Wi

e Appears as the compatibility conditions of the following system of Riccati
equations?

wi = —wp Al + kP + ()2 4w (WD — w) + (wy — kD)WY — w2,

W)((l) = —wx — k12 + (W(l) - w)z,

e Using wy = Wiy, W>(<t1) = Wt(xl) we eliminate w to obtain the potential KdV

equation expressed in w,

e The system (4) is called Bicklund transformation with parameter k; for the
potential KdV equation

e We obtain an one-parameter family of solutions w*) of a given PDE from a given

solution w

BTy :w »k—1> w®

'Wahlquist, Estabrook, 1973
2js obtained from KdV by the substitution u = —wy



e Starting with the initial solution w, we use the Backlund transformation and
obtain the solutions w® and w® corresponding to parameters ki and k». For
each of these solutions, we use the Backlund transformation (see figure) and
require w1 = Wl This will precisely determine the integration constants.

>
w12 = @)

A

K k2
ki

Bianchi commutativity diagram

e From the diagram we have the 4 Riccati

wi +w, = =k + (W — w)?, w® 4w = — k2 + (W(2) —w)?,
w2 4w = 2 (WD )2 0D 0 2,00 Q)2

e We can obtain a purely algebraic relation



e We have

(1) _

wy w? = (WM —w)? — (w® —w)?+ K — K,

wi) — w® = (w1 — WMy (W12 Y g k2

e By eliminating the derivatives, we obtain the so-called " Bianchi's permutability
theorem,” or, as it is otherwise known, the "nonlinear superposition of solutions”
of the potential KdV equation

Nonlinear superposition principle of the

potential KdV equation

(W(lz) — W)(W(l) - W(2)) = k? — k2.

(12

e So we can obtain the solution w? from w, W(l), W(2), purely algebraic!



Bianchi diagram of 3-soliton solution

e We can construct an infinite sequence of solutions to the potential KdV through
the nonlinear superposition principle
e Eg
@) ki — k3
w(12) — (23)
RwO(w® — w4 2w (w® — W) £ WP (W — @)
(W@ — wO®) + (WO — wh) + Z(wh — w®d) :

w12 —

10



The lattice potential KdV equation



From nonlinear superposition principle to the lattice potential KdV equation

e Interpreting that the Backlund transformation introduces an additional discrete
independent variable®, i.e.

1 12
Wmn i= W, Wmnti,n = w! ), Wmnt1,n+1 1= wl ), etc., mnezZ

e The nonlinear superposition of solutions is reinterpreted as a discrete equation..

The lattice potential KdV equation

_ 2 2 - -
(Wm+1,n+1 - Wm,n)(Wm+1,n - Wm,n+1) =Pm — 9n; Pm -*klv an -7k27

Wm+1,n—1
Win+1,n / \ /

/ \ Wm,n—1 Wm+1,n
Wn,n Wm+1,n41 \

\ Win n/ Wt 1,n41
Wm_n+1/ / \ /

Wm—1,n Wm,n+1
(a) The lattice potential KdV equation as
an algebraic relation on a 2D-cell of the Z? \ /
graph Wm—1,n+1

(b) Fields in vertices of the 72 graph

3Levi and Benguria 1980, Nijhoff, Quispel, and Capel 1983 11



e LpKdV is (alternating) translation invariant W, » — Wm.n + (—1)"""c, c a

constant.

o LpKdV re-written in terms of the invariants

Xm+1/2,n = Wm+1,n + Wm,n, Ym,n+1/2 ‘= Wm, n+1 + Wm,n,

The lattice potential KdV equation as an edge system

ki — k3
Xm+1/2,n+1 = ym,n+1/2 + 5
Xm4+1/2,n — Ym,n+1/2

K — k3

Ymt+1,n+1/2 = Xm+1/2,n T+ .
Xm+1/2,n — Ym,n+1/2

\

e We can associate the map R : CP! x CP! — CP! x CP!

k? — k3 ki — k3
R:(x,y)b—><y+ L 2,x—|— L 2).
X—Yy X—Yy

12



R serves as solution of the quantum Yang-Baxter equation

The quantum Yang-Baxter equation

Ri2 0 Ri3 0 Ras = Rz 0 Riz o Rz

Where Rjj : X x X x X —= X x X x X, maps and X a set.

The subscripts denote the sets where the map R acts non-trivially when is acting

on X x X x X

For example

R;j : CP' x CP' x CP' — CP' x CP' x CP"

Rlzi(x,%Z)H(y+al_32,x+al_a2,

X—=Yy X—=Yy
ai—a ai—a
R12:(X,y7z)H(z+ L 3, X+ ! 3
X — X —z
R121(X,y,Z)H(X72+a2_a3, 2%
y—z y—z

13



Discrete traveling wave solutions*

e We consider functions x = xm,, on the 77 graph with the periodicity
Xm,n = Xm+d—1,n—1, de{2,3,...,n}.

e Or equivalently functions invariant under {m, n} — {m+d —1,n— 1}.

e Due to this periodicity, it follows that the dependent variable necessarily depends
on m,nas /| :=m+ n(d—1).

e So we have x = x;. This reduction constitutes the discrete analog of the traveling
wave reduction we saw for the KdV equation.

e Note: In the continuous case, this reduction yielded a family of ODEs of a fixed
order. Here, we have a family of difference equations (AEs) whose order depends
on the integer d.

e E.g. for d =3, we have
a
Yisi+yi+yi-1= v +b, a=cl+a+ Cz(—l)l, l1eZ,
(

The discrete Painlevé I.

“Papageorgiou, Nijhoff, Capel 1990
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Recutting of polygons ° and the lattice potential KdV equation

e Some integrable discrete dynamical systems can be constructed by repeating a
specific geometric construction

Vi

Vi—1 Vit

5Adler 1993

15



Recutting of polygons ° and the lattice potential KdV equation

e Some integrable discrete dynamical systems can be constructed by repeating a
specific geometric construction

Vi Vi v

Vie1 Vit1 Pi; Vie1 Vit1

The recutting p; moves the vertex v; to v/. The other vertices are not affected

e p? = id for any vertex v;
e piopj = pjo pi for any two non-consecutive vertices vj, v;

® i O pit1 0 pi = Pi+1 O pi © pit1, for any two consecutive vertices vj, Vi1

5Adler 1993
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vi(xi, yi) AC7

Vie1 Vigl HEIN Vie1 & N Vit

e The angle Vim+1 and the area of the corresponding triangle is preserved after
the recutting, so

e T e
ﬁ — 7 / ﬁ —_— 7 i
Vi—1Vi * ViVitl = Vi1V * Vj Viy1, Vi—1Vi X ViViyl = Vi—1V; X V;Vip1
e we obtain
) r_ /i2+1 - II2
pil Ui up =Uui+ ———,
Uiyl — Uj
h 5 o= 5 2 =_1. 2 -=(u: . m =
where uj == x; +1y;, 1 = =1, [7 := (ui — ui—1)(di — ui—1).

e |t is related to IpKdV

16



e Part B: On quadrirational pentagon
maps?

?C. Evripidou, P. K, A. Tongas, arXiv:2405.04945, 2024



The pentagon (or fussion) equation

e Moore, G. and Seiberg, N. 1989: Conformal field theory
e Maillet, J. 1990: 3-dimensional integrable systems

R12R13R23 = Ro3Ria,
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e A set-theoretical version of the pentagon equation considers Rj; as maps
Rj: X xXxX—=XxXxX where Xis a set.
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The pentagon equation and pentagon maps

e Conformal field theory, Poisson maps, Hopf algebras, triangulations of piecewise
linear 3-manifolds, Roger’s dilogarithm, ... Discrete Integrable Systems

e Solutions of the set-theoretical version of the pentagon equation are called
pentagon maps®

ﬁKorepanov, Kashaev, Sergeev, Doliwa, Sharygin, Dimakis, Miiller-Hoissen,
Catino, Mazzotta, Miccoli, Colazzo, Jespers, Kubat
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The pentagon equation and pentagon maps

e Conformal field theory, Poisson maps, Hopf algebras, triangulations of piecewise
linear 3-manifolds, Roger’s dilogarithm, ... Discrete Integrable Systems

e Solutions of the set-theoretical version of the pentagon equation are called
pentagon maps®
Some discrete integrable systems can be naturally associated with pentagon maps.

e For example the pentagon map

5/:(X,y)&—>(u,v):( ,X+yfxy)

_x
X+y—xy

is related to the Hirota-Miwa equation (discretization of KP)

TI+1,mnTl,m+1,n+1 T T1,m+1,nTI+1,m,n+1 + TIm,n+1TI+1,m+1,n = 0, /» m,n¢c 7

ﬁKorepanov, Kashaev, Sergeev, Doliwa, Sharygin, Dimakis, Miiller-Hoissen,
Catino, Mazzotta, Miccoli, Colazzo, Jespers, Kubat
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Equivalent forms of the pentagon equation

e The pentagon equation
Ri2 0 Ri30 Rz = Raz o Rin
e The reverse (or dual) pentagon equation
S23 0 S13 0 S12 = S12 0 Sp3, S:=70RorT
e The braid-pentagon equation
Bi2 0 B3 0 Bio = Ba3 0 712 0 Bas, B:=RorT,

where 7 : (x,y) — (y, x)

19



e Mapping S; : (x,y) + (u, v) is equivalent to the refactorization problem
A(u)B(v) = B(y)A(x),

where the matrices A and B respectively read

A(x) == <18X );)7 B(x) := <llx 2),

e An alternative interpretation of the matrix refactorization problem is the following
parameter dependent associativity condition (M.-Hoissen 2023)

pox(qoy,r)=(pouqg)o,r,
for p, q, r vectors in some vector space V.
e Then the above associativity condition for the binary operation defined by
poxq:=xp+(1-x)q,

delivers the map S;.

20



e A geometric interpretation of the associativity condition is provided by a (62,43)
configuration on the plane, the Veblen configuration

e The binary operation represents the collinearity of three points p, q, poy q

v

The Veblen configuration (62, 43)

e The pentagon equation reads as a consistency condition on the Desargues
configuration (103) that contains five Menelaus configurations’
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e A geometric interpretation of the associativity condition is provided by a (62,43)
configuration on the plane, the Veblen configuration

e The binary operation represents the collinearity of three points p, q, poy q

The Veblen configuration (62, 43)

e The pentagon equation reads as a consistency condition on the Desargues
configuration (103) that contains five Menelaus configurations’

"Doliwa, Sergeev 2014
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A classification result?

?C. Evripidou, P. K, A. Tongas, arXiv:2405.04945, 2024



Equivalence relation

e There is a natural equivalence relation on pentagon maps

Twomaps R: X x X - XxXand S: X x X — X x X are called M6b equivalent if
there exists a bijection ¢ : X — X such that Ro (¢ x ¢) = (¢ X ¢) 0 S.

e The equivalence relation preserves the pentagon equation

Let R: X x X — X x X be a pentagon map and S a Mé&b equivalent map to R. Then
S is also a pentagon map.

$1205530S3=(¢""x¢ ' xp ) oRpoRizoRis0 (X P X P)
= (¢ x¢ ' x ¢ )oRsoR0(} XX P)=Sx30 S5,

22



Quadrirational maps

e Amap R: X xX > (x,y) — (u,v) € X x X is called quadrirational, if both the map
R and the so called companion map (or partial inverse)
cR: X x X3 (x,v) — (u,y) € X x X, are birational maps.

Said differently, the birational map R = (u, v) is quadrirational if for any y € X
(generic), the map u(.,y) : x — u(x, y) is birational and for any x € X (generic),
v(x,.) 1 y — v(x,y) is birational.

e In what follows X = CP', which we identify with C U {co} with its usual operations.

23



eTheorem®
Any quadrirational pentagon map R : CP' x CP' — CP' x CP*, with R = (u, v) is
M&6b equivalent to exactly one of the following maps:

X

U=—/—"—, v=Xx+y—xy, (S1)
X+y—xy

u=x, v=x+y—bxy, (Sn)

u= i, v=y, (Sm)
y

u=x-y, v=y, (SIV)

where 6 =0, 1.

8C. Evripidou, P.K. and A. Tongas 2024
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eSketch of the proof
Let R: (x,y) — (u(x,y),v(x,y)), be a pentagon map

Ri20 Ri30 Ry3 = Rz 0 Ry

Then its components u, v necessarily satisfy the following relations

u(x,y) = u(u(x, v(y,2)),uly,2)), 3)
u(v(x,y),z) = v (u(x, v(y, 2)), u(y, 2)), (4)
V(V(X’ y),Z) = V(X7 V(y7 Z)) (5)

We immediately recognize that (5) says that v is an associative function.

25



o° If v : CP! x CP* — CP! is a nonconstant associative rational function then there
exists a Mobius transformation ¢ : CP* — CP" such that ¢~' o v o (¢ x ¢) is equal to
X, Y, X +yorx—+y—xy.

For any of the representatives (except v(x,y) = x, that does not give quadrirational
maps) of associative rational functions above, we find all rational functions u that
satisfy the equations (3) and (4).

Because of the quadrirationality of R, the rational function u is of the form

u(x,y) = %, where the polynomials a, b, ¢ and d are at most quadratic in y.

°J. V. Brawley, S. Gao, and D. Mills 2001
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Discussion

e The inverse maps S, ', of the Theorem satisfy the reverse pentagon equation,

while the mappings S,;_v o 7 satisfy the braid-pentagon equation.
e The sets of singular points of the mappings S;_,/ respectively are
ZS/ = {(03 0)7 (007 1)7 (15 OO)}7

s, = {(0,0), (00, 00)},

Zs;} = {(OC’ 1/5)7 (1/67 OC)},

sy = {(c0, 00)2}

e The results of the theorem can be extended to the non-abelian setting

u=x(x+y—yx)"},

u=x,

—1
u=xy ,
Uu=x-—y,

where § =0, 1.

v=x+y—yx
V=x+y—dyx,

(&)

(&h)
(Sm)
(Sw)

27



e Mapping S; was firstly introduced in (Kashaev 1998) inside the context of
quantum dilogarithm. Furthermore, S; also results from the evolution of matrix
KP solitons (Dimakis, Miiller-Hoissen 2018). The non-abelian form of S; that is
&), arises as a reduction of the so-called normalization map (Doliwa, Sergeev
2014). Mapping &, (in an equivalent form) first appeared in (Kashaev, Sergeev
1998).

e There is the degeneration diagram

d
N

1 0
SII 7 SII

S

S — Siv

Degeneration diagram
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Conclusions/lets go back in history
(maybe 60-70 generations)
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Menelaus theorem

e Let A, B, C be the vertices of a triangle and D, E, F be three points on the
(extended) edges of the triangle opposite to A, B, C respectively. Then, the
points D,E,F are collinear if and only if

|5
18
HQ\

FB DC EA

where PQ/QR denotes the ratio of directed lengths associated with any three
collinear points P, Q, R.

F

The Veblen or Menelaus configuration (62, 43)
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Y oc euxapLoto!
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