On quadrirational pentagon maps ^a

30th Summer School – Conference "Dynamical Systems and Complexity". Calandra University Camping, Halkidiki, 28/8/2024 – 6/9/2024

Pavlos Kassotakis September 6, 2024

Department of Mathematical methods in physics, University of Warsaw, Warsaw, Poland

^aThis research is part of the project No. 2022/45/P/ST1/03998 co-funded by the National Science Centre and the European Union Framework Programme for Research and Innovation Horizon 2020 under the Marie Skłodowska-Curie grant agreement no. 945339.

History/Introduction

John Scott Russell 1808-1882

I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair of horses, when the boat suddenly stopped not so the mass of water in the channel which it had put in motion; it accumulated round the prow of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming the form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which continued its course along the channel apparently without change of form or diminution of speed. I followed it on horseback, and overtook it still rolling on at a rate of some eight or nine miles an hour, preserving its original figure some thirty feet long and a foot to a foot and a half in height. Its height gradually diminished, and after a chase of one or two miles I lost it in the windings of the channel. Such, in the month of August 1834, was my first chance interview with that singular and beautiful phenomenon which I have called the Wave of Translation.

https://www.youtube.com/watch?v=wEbYELtGZwI

Diederik Korteweg 1848-1941

Joseph Boussinesq 1842-1928

Gustav de Vries 1866-1934

• Bussinesq (1877), Korteweg and de Vries (1895).

The KdV equation $u_t = u_{xxx} + 6uu_x$

u = u(x, t): displacement at position x at the time t

$$u_t = \frac{\partial u}{\partial t},$$
 $u_x = \frac{\partial u}{\partial x},$ $u_{xxx} = \frac{\partial^3 u}{\partial x^3}.$

Zabusky and Kruskal (1965) Solitonic solutions of the KdV. Solitons

Martin Kruskal 1925-2006

Norman Zabusky 1929-2018

Zabusky and Kruskal (1965) Solitonic solutions of the KdV. Solitons

Norman Zabusky 1929-2018

Martin Kruskal 1925-2006

$$u_t = u_{xxx} + 6uu_x$$
, (KdV)

- Assume that u(x, t) is invariant under {x, t} → {x cδ, t δ}, ∀δ
 This solution depends on x, t necessarily as ξ := x + ct, and correspond to traveling waves (to the left) with constant speed c.
- The travelling wave solution

$$u(x,t) = \phi(\xi), \quad \xi = x + ct,$$

satisfies the nonlinear 1st order ODE

$$\left(\frac{d\phi}{d\xi}\right)^2 = b + a\phi + c\phi^2 - 2\phi^3,\tag{1}$$

 This ODE could be realized as the energy of a Hamiltonian system with cubic potential

$$E = \frac{1}{2}(\phi') + V(\phi), \quad V = \phi^3 - \frac{1}{2}(c\phi^2 + a\phi), \quad b = 2E.$$

• Assuming the boundary conditions ϕ , $\frac{d\phi}{d\xi}$, $\frac{d^2\phi}{d\xi^2} \to 0$ when $|\xi| \to \infty$, we have a = b = 0 and (1) has as solution

$$u = \phi(\xi) = \frac{1}{2}c \operatorname{sech}^2 \frac{1}{2}\sqrt{c}(x + ct + \delta), \quad \operatorname{sech} x = \frac{1}{\cosh x} = \frac{2}{e^x + e^{-x}},$$

- That is the wave of translations (soliton) that John Scott Russell observed
- The wave amplitude is exactly half of its speed c.

• 3D Kadomstev-Petviashvili (KP) equation

$$(u_t + 6uu_x + u_{xxx})_x \pm 3u_{yy} = 0$$

• 2D Korteveg de Vries (KdV) equation

$$u_t + 6uu_x + u_{xxx} = 0$$

• 1D Painlevé II (*P*_{II})

$$w_{xx} = 2w^3 + xw + \alpha$$

Nonlinear superposition of the solutions of the potential KdV equation

- The potential KdV equation: $w_t = 6(w_x)^2 w_{xxx}$.
- Appears as the compatibility conditions of the following system of Riccati equations¹

$$w_t^{(1)} = -w_t + 4[k_1^4 + k_1^2 w_x + (w_x)^2 + w_{xx}(w^{(1)} - w) + (w_x - k_1^2)(w^{(1)} - w)^2],$$

$$w_x^{(1)} = -w_x - k_1^2 + (w^{(1)} - w)^2,$$
(2)

- Using $w_{xt} = w_{tx}$, $w_{xt}^{(1)} = w_{tx}^{(1)}$ we eliminate w to obtain the potential KdV equation expressed in $w^{(1)}$.
- The system (4) is called Bäcklund transformation with parameter k₁ for the potential KdV equation
- We obtain an one-parameter family of solutions $w^{(1)}$ of a given PDE from a given solution w

$$BT_{k_1}: w \xrightarrow{k_1} w^{(1)}$$

¹Wahlquist, Estabrook, 1973

² is obtained from KdV by the substitution $u = -w_x$

Starting with the initial solution w, we use the Bäcklund transformation and obtain the solutions w⁽¹⁾ and w⁽²⁾ corresponding to parameters k₁ and k₂. For each of these solutions, we use the Bäcklund transformation (see figure) and require w⁽¹²⁾ = w⁽²¹⁾. This will precisely determine the integration constants.

Bianchi commutativity diagram

• From the diagram we have the 4 Riccati

$$\begin{split} & w_x^{(1)} + w_x = -k_1^2 + (w^{(1)} - w)^2, \qquad w_x^{(2)} + w_x = -k_2^2 + (w^{(2)} - w)^2, \\ & w_x^{(12)} + w_x^{(1)} = -k_2^2 + (w^{(12)} - w^{(1)})^2, \qquad w_x^{(12)} + w_x^{(2)} = -k_1^2 + (w^{(12)} - w^{(2)})^2 \end{split}$$

• We can obtain a purely algebraic relation

We have

$$w_x^{(1)} - w_x^{(2)} = (w^{(1)} - w)^2 - (w^{(2)} - w)^2 + k_2^2 - k_1^2,$$

$$w_x^{(1)} - w_x^{(2)} = (w^{(12)} - w^{(1)})^2 - (w^{(12)} - w^{(2)})^2 + k_1^2 - k_2^2.$$

 By eliminating the derivatives, we obtain the so-called "Bianchi's permutability theorem," or, as it is otherwise known, the "nonlinear superposition of solutions" of the potential KdV equation

• So we can obtain the solution $w^{(12)}$ from $w, w^{(1)}, w^{(2)}$, purely algebraic!

Bianchi diagram of 3-soliton solution

- We can construct an infinite sequence of solutions to the potential KdV through the nonlinear superposition principle
- E.g.

$$w^{(123)} = w^{(2)} + \frac{k_1^2 - k_3^2}{w^{(12)} - w^{(23)}} \\ = \frac{k_1^2 w^{(1)} (w^{(2)} - w^{(3)}) + k_2^2 w^{(2)} (w^{(3)} - w^{(1)}) + k_3^2 w^{(3)} (w^{(1)} - w^{(2)})}{k_1^2 (w^{(2)} - w^{(3)}) + k_2^2 (w^{(3)} - w^{(1)}) + k_3^2 (w^{(1)} - w^{(2)})}.$$

The lattice potential KdV equation

From nonlinear superposition principle to the lattice potential KdV equation

• Interpreting that the Bäcklund transformation introduces an additional discrete independent variable³, i.e.

$$w_{m,n} := w, \quad w_{m+1,n} := w^{(1)}, \quad w_{m+1,n+1} := w^{(12)}, \quad \text{etc.}, \quad m, n \in \mathbb{Z}$$

• The nonlinear superposition of solutions is reinterpreted as a discrete equation..

$$(w_{m+1,n+1}-w_{m,n})(w_{m+1,n}-w_{m,n+1})=p_m^2-q_n^2, \quad p_m:=k_1, \quad q_n:=k_2,$$

³Levi and Benguria 1980, Nijhoff, Quispel, and Capel 1983

- LpKdV is (alternating) translation invariant w_{m,n} → w_{m,n} + (-1)^{m+n}c, c a constant.
- LpKdV re-written in terms of the invariants

$$x_{m+1/2,n} := w_{m+1,n} + w_{m,n}, \quad y_{m,n+1/2} := w_{m,n+1} + w_{m,n},$$

The lattice potential KdV equation as an edge system

$$\begin{aligned} x_{m+1/2,n+1} &= y_{m,n+1/2} + \frac{k_1^2 - k_2^2}{x_{m+1/2,n} - y_{m,n+1/2}}, \\ y_{m+1,n+1/2} &= x_{m+1/2,n} + \frac{k_1^2 - k_2^2}{x_{m+1/2,n} - y_{m,n+1/2}}. \end{aligned}$$

• We can associate the map $R:\mathbb{CP}^1 imes\mathbb{CP}^1 o\mathbb{CP}^1 imes\mathbb{CP}^1$

$$R: (x, y) \mapsto \left(y + \frac{k_1^2 - k_2^2}{x - y}, x + \frac{k_1^2 - k_2^2}{x - y}\right).$$

• R serves as solution of the quantum Yang-Baxter equation

The quantum Yang-Baxter equation

$$R_{12} \circ R_{13} \circ R_{23} = R_{23} \circ R_{13} \circ R_{12}$$

- Where $R_{ij}: X \times X \times X \mapsto X \times X \times X$, maps and X a set.
- The subscripts denote the sets where the map R acts non-trivially when is acting on X × X × X
- For example

$$R_{ij}:\mathbb{CP}^1 imes\mathbb{CP}^1 imes\mathbb{CP}^1 o\mathbb{CP}^1 imes\mathbb{CP}^1 imes\mathbb{CP}^1$$

$$\begin{split} R_{12} &: (x, y, z) \mapsto \left(y + \frac{a_1 - a_2}{x - y}, x + \frac{a_1 - a_2}{x - y}, z \right), \\ R_{12} &: (x, y, z) \mapsto \left(z + \frac{a_1 - a_3}{x - z}, y, x + \frac{a_1 - a_3}{x - z} \right), \\ R_{12} &: (x, y, z) \mapsto \left(x, z + \frac{a_2 - a_3}{y - z}, y + \frac{a_2 - a_3}{y - z} \right). \end{split}$$

• We consider functions $x = x_{m,n}$ on the \mathbb{Z}^2 graph with the periodicity

$$x_{m,n} = x_{m+d-1,n-1}, \qquad d \in \{2,3,\ldots,n\}.$$

- Or equivalently functions invariant under $\{m, n\} \mapsto \{m + d 1, n 1\}$.
- Due to this periodicity, it follows that the dependent variable necessarily depends on m, n as l := m + n(d − 1).
- So we have $x = x_l$. This reduction constitutes the discrete analog of the traveling wave reduction we saw for the KdV equation.
- Note: In the continuous case, this reduction yielded a family of ODEs of a fixed order. Here, we have a family of difference equations (ΔEs) whose order depends on the integer d.
- E.g. for d = 3, we have

$$y_{l+1} + y_l + y_{l-1} = rac{a}{y_l} + b, \quad a = c_0 l + c_1 + c_2 (-1)^l, \quad l \in \mathbb{Z},$$

The discrete Painlevé I.

⁴Papageorgiou, Nijhoff, Capel 1990

Recutting of polygons ⁵ and the lattice potential KdV equation

• Some integrable discrete dynamical systems can be constructed by repeating a specific geometric construction

Recutting of polygons ⁵ and the lattice potential KdV equation

 Some integrable discrete dynamical systems can be constructed by repeating a specific geometric construction

The recutting ρ_i moves the vertex v_i to v'_i . The other vertices are not affected

- $\rho_i^2 = id$ for any vertex v_i
- $\rho_i \circ \rho_j = \rho_j \circ \rho_i$ for any two non-consecutive vertices v_i, v_j
- $\rho_i \circ \rho_{i+1} \circ \rho_i = \rho_{i+1} \circ \rho_i \circ \rho_{i+1}$, for any two consecutive vertices v_i, v_{i+1}

⁵Adler 1993

• The angle $v_{i-1}v_iv_{i+1}$ and the area of the corresponding triangle is preserved after the recutting, so

$$\overrightarrow{v_{i-1}v_i} \cdot \overrightarrow{v_iv_{i+1}} = \overrightarrow{v_{i-1}v_i'} \cdot \overrightarrow{v_i'v_{i+1}}, \qquad \overrightarrow{v_{i-1}v_i} \times \overrightarrow{v_iv_{i+1}} = \overrightarrow{v_{i-1}v_i'} \times \overrightarrow{v_i'v_{i+1}}$$

• we obtain

$$\rho_i: u_i \mapsto u'_i = u_i + \frac{l_{i+1}^2 - l_i^2}{u_{i+1}^2 - \overline{u_i}},$$

where $u_i := x_i + iy_i$, $i^2 = -1$, $I_i^2 := (u_i - u_{i-1})(\bar{u_i} - \bar{u_{i-1}})$.

• It is related to IpKdV

• Part B: On quadrirational pentagon maps^a

^aC. Evripidou, P. K, A. Tongas, arXiv:2405.04945, 2024

The pentagon (or fussion) equation

- Moore, G. and Seiberg, N. 1989: Conformal field theory
- Maillet, J. 1990: 3-dimensional integrable systems

 $R_{12}R_{13}R_{23} = R_{23}R_{12},$

=

The pentagon (or fussion) equation

- Moore, G. and Seiberg, N. 1989: Conformal field theory
- Maillet, J. 1990: 3-dimensional integrable systems

 $R_{12}R_{13}R_{23}=R_{23}R_{12},$

=

Pachner 2-3 move

 A set-theoretical version of the pentagon equation considers R_{ij} as maps R_{ij} : X × X × X → X × X × X where X is a set.

The pentagon (or fussion) equation

- Moore, G. and Seiberg, N. 1989: Conformal field theory
- Maillet, J. 1990: 3-dimensional integrable systems

 $R_{12}R_{13}R_{23}=R_{23}R_{12},$

=

Pachner 2-3 move

 A set-theoretical version of the pentagon equation considers R_{ij} as maps R_{ij} : X × X × X → X × X × X where X is a set.

- Conformal field theory, Poisson maps, Hopf algebras, triangulations of piecewise linear 3-manifolds, Roger's dilogarithm, ... Discrete Integrable Systems
- Solutions of the set-theoretical version of the pentagon equation are called pentagon maps⁶

⁶Korepanov, Kashaev, Sergeev, Doliwa, Sharygin, Dimakis, Müller-Hoissen, Catino, Mazzotta, Miccoli, Colazzo, Jespers, Kubat

- Conformal field theory, Poisson maps, Hopf algebras, triangulations of piecewise linear 3-manifolds, Roger's dilogarithm, ... Discrete Integrable Systems
- Solutions of the set-theoretical version of the pentagon equation are called pentagon maps⁶

Some discrete integrable systems can be naturally associated with pentagon maps.

⁶Korepanov, Kashaev, Sergeev, Doliwa, Sharygin, Dimakis, Müller-Hoissen, Catino, Mazzotta, Miccoli, Colazzo, Jespers, Kubat

- Conformal field theory, Poisson maps, Hopf algebras, triangulations of piecewise linear 3-manifolds, Roger's dilogarithm, ... Discrete Integrable Systems
- Solutions of the set-theoretical version of the pentagon equation are called pentagon maps⁶

Some discrete integrable systems can be naturally associated with pentagon maps.

• For example the pentagon map

$$S_l: (x, y) \mapsto (u, v) = \left(\frac{x}{x + y - xy}, x + y - xy\right)$$

is related to the Hirota-Miwa equation (discretization of KP)

$$\tau_{l+1,m,n}\tau_{l,m+1,n+1} + \tau_{l,m+1,n}\tau_{l+1,m,n+1} + \tau_{l,m,n+1}\tau_{l+1,m+1,n} = 0, \quad l,m,n \in \mathbb{Z}$$

⁶Korepanov, Kashaev, Sergeev, Doliwa, Sharygin, Dimakis, Müller-Hoissen, Catino, Mazzotta, Miccoli, Colazzo, Jespers, Kubat

• The pentagon equation

$$R_{12} \circ R_{13} \circ R_{23} = R_{23} \circ R_{12}$$

• The reverse (or dual) pentagon equation

$$S_{23} \circ S_{13} \circ S_{12} = S_{12} \circ S_{23}, \qquad \qquad S := \tau \circ R \circ \tau$$

• The braid-pentagon equation

$$B_{12} \circ B_{23} \circ B_{12} = B_{23} \circ \tau_{12} \circ B_{23}, \qquad B := R \circ \tau,$$

where $\tau : (x, y) \mapsto (y, x)$

• Mapping $S_I : (x, y) \mapsto (u, v)$ is equivalent to the refactorization problem

A(u)B(v)=B(y)A(x),

where the matrices A and B respectively read

$$A(x) := \begin{pmatrix} 1-x & x \\ 0 & 1 \end{pmatrix}, \qquad \qquad B(x) := \begin{pmatrix} 1 & 0 \\ 1-x & x \end{pmatrix},$$

• An alternative interpretation of the matrix refactorization problem is the following parameter dependent associativity condition (M.-Hoissen 2023)

$$p \circ_x (q \circ_y r) = (p \circ_u q) \circ_v r,$$

for p, q, r vectors in some vector space \mathcal{V} .

• Then the above associativity condition for the binary operation defined by

$$p \circ_{x} q := x p + (1-x) q,$$

delivers the map S_l .

• The binary operation represents the collinearity of three points p, q, $p \circ_u q$

The Veblen configuration $(6_2, 4_3)$

• The binary operation represents the collinearity of three points p, q, $p \circ_u q$

• The binary operation represents the collinearity of three points p, q, $p \circ_u q$

The Veblen configuration $(6_2, 4_3)$

• The binary operation represents the collinearity of three points p, q, $p \circ_u q$

⁷Doliwa, Sergeev 2014

A classification result^a

^aC. Evripidou, P. K, A. Tongas, arXiv:2405.04945, 2024

There is a natural equivalence relation on pentagon maps

Two maps $R : \mathbb{X} \times \mathbb{X} \to \mathbb{X} \times \mathbb{X}$ and $S : \mathbb{X} \times \mathbb{X} \to \mathbb{X} \times \mathbb{X}$ are called *Möb* equivalent if there exists a bijection $\phi : \mathbb{X} \to \mathbb{X}$ such that $R \circ (\phi \times \phi) = (\phi \times \phi) \circ S$.

• The equivalence relation preserves the pentagon equation

Let $R : \mathbb{X} \times \mathbb{X} \to \mathbb{X} \times \mathbb{X}$ be a pentagon map and S a $M\ddot{o}b$ equivalent map to R. Then S is also a pentagon map.

$$\begin{split} S_{12} \circ S_{13} \circ S_{23} &= (\phi^{-1} \times \phi^{-1} \times \phi^{-1}) \circ R_{12} \circ R_{13} \circ R_{23} \circ (\phi \times \phi \times \phi) \\ &= (\phi^{-1} \times \phi^{-1} \times \phi^{-1}) \circ R_{23} \circ R_{12} \circ (\phi \times \phi \times \phi) = S_{23} \circ S_{12}, \end{split}$$

• A map $R : \mathbb{X} \times \mathbb{X} \ni (x, y) \mapsto (u, v) \in \mathbb{X} \times \mathbb{X}$ is called quadrivational, if both the map R and the so called companion map (or partial inverse) $cR : \mathbb{X} \times \mathbb{X} \ni (x, v) \mapsto (u, y) \in \mathbb{X} \times \mathbb{X}$, are birational maps.

Said differently, the birational map R = (u, v) is quadrivational if for any $y \in \mathbb{X}$ (generic), the map $u(., y) : x \mapsto u(x, y)$ is birational and for any $x \in \mathbb{X}$ (generic), $v(x, .) : y \mapsto v(x, y)$ is birational.

• In what follows $\mathbb{X} = \mathbb{CP}^1$, which we identify with $\mathbb{C} \cup \{\infty\}$ with its usual operations.

•<u>Theorem⁸</u>

Any quadrivational pentagon map $R : \mathbb{CP}^1 \times \mathbb{CP}^1 \to \mathbb{CP}^1 \times \mathbb{CP}^1$, with R = (u, v) is *Möb* equivalent to exactly one of the following maps:

$u=\frac{x}{x+y-xy},$	v = x + y - xy,	(S_l)
u = x,	$v = x + y - \delta x y,$	$(S^{\delta}_{\prime\prime})$
$u = \frac{x}{y},$	v = y,	(S_{III})
u = x - y,	v = y,	(S_{IV})

where $\delta = 0, 1$.

⁸C. Evripidou, P.K. and A. Tongas 2024

•Sketch of the proof Let $R: (x, y) \mapsto (u(x, y), v(x, y))$, be a pentagon map

$$R_{12} \circ R_{13} \circ R_{23} = R_{23} \circ R_{12} \,.$$

Then its components u, v necessarily satisfy the following relations

$$u(x, y) = u(u(x, v(y, z)), u(y, z)),$$
(3)

$$u(v(x, y), z) = v(u(x, v(y, z)), u(y, z)),$$
(4)

$$v(v(x, y), z) = v(x, v(y, z)).$$
 (5)

We immediately recognize that (5) says that v is an associative function.

•⁹ If $v : \mathbb{CP}^1 \times \mathbb{CP}^1 \to \mathbb{CP}^1$ is a nonconstant associative rational function then there exists a Möbius transformation $\phi : \mathbb{CP}^1 \to \mathbb{CP}^1$ such that $\phi^{-1} \circ v \circ (\phi \times \phi)$ is equal to x, y, x + y or x + y - xy.

For any of the representatives (except v(x, y) = x, that does not give quadrivational maps) of associative rational functions above, we find all rational functions u that satisfy the equations (3) and (4).

Because of the quadrirationality of *R*, the rational function *u* is of the form $u(x, y) = \frac{a(y)x+b(y)}{c(y)x+d(y)}$, where the polynomials *a*, *b*, *c* and *d* are at most quadratic in *y*.

⁹J. V. Brawley, S. Gao, and D. Mills 2001

Discussion

- The inverse maps S_{I-IV}^{-1} of the Theorem satisfy the reverse pentagon equation, while the mappings $S_{I-IV} \circ \tau$ satisfy the braid-pentagon equation.
- The sets of singular points of the mappings S_{I-IV} respectively are

$$\begin{split} \Sigma_{\mathcal{S}_{I}} &= \{(0,0), (\infty,1), (1,\infty)\}, \qquad \Sigma_{\mathcal{S}_{II}^{\delta}} &= \{(\infty,1/\delta), (1/\delta,\infty)\}, \\ \Sigma_{\mathcal{S}_{III}} &= \{(0,0), (\infty,\infty)\}, \qquad \Sigma_{\mathcal{S}_{IV}} &= \{(\infty,\infty)^{2}\}. \end{split}$$

• The results of the theorem can be extended to the non-abelian setting

$$u = x(x + y - yx)^{-1},$$
 $v = x + y - yx,$ (\mathfrak{S}_l)

$$u = x,$$
 $v = x + y - \delta yx,$ (\mathfrak{S}''_{ll})

$$u = xy^{-1}, \qquad \qquad v = y, \qquad \qquad (\mathfrak{S}_{III})$$

$$u = x - y, \qquad v = y, \qquad (\mathfrak{S}_{IV})$$

where $\delta = 0, 1$.

- Mapping S_I was firstly introduced in (Kashaev 1998) inside the context of quantum dilogarithm. Furthermore, S_I also results from the evolution of matrix KP solitons (Dimakis, Müller-Hoissen 2018). The non-abelian form of S_I that is G_I, arises as a reduction of the so-called *normalization map* (Doliwa, Sergeev 2014). Mapping G^δ_{II} (in an equivalent form) first appeared in (Kashaev, Sergeev 1998).
- There is the degeneration diagram

Degeneration diagram

Conclusions/lets go back in history (maybe 60-70 generations)

Μενέλαος ὁ Ἀλεξανδρεύς 70 - 140. Σφαιρικά

$$\frac{\overline{AF}}{\overline{FB}} \frac{\overline{BD}}{\overline{DC}} \frac{\overline{CE}}{\overline{EA}} = -1,$$

where $\overline{PQ}/\overline{QR}$ denotes the ratio of directed lengths associated with any three collinear points P, Q, R.

$$\frac{\overline{AF}}{\overline{FB}} \frac{\overline{BD}}{\overline{DC}} \frac{\overline{CE}}{\overline{EA}} = -1,$$

where $\overline{PQ}/\overline{QR}$ denotes the ratio of directed lengths associated with any three collinear points P, Q, R.

$$\frac{\overline{AF}}{\overline{FB}} \frac{\overline{BD}}{\overline{DC}} \frac{\overline{CE}}{\overline{EA}} = -1,$$

where $\overline{PQ}/\overline{QR}$ denotes the ratio of directed lengths associated with any three collinear points P, Q, R.

$$\frac{\overline{AF}}{\overline{FB}} \frac{\overline{BD}}{\overline{DC}} \frac{\overline{CE}}{\overline{EA}} = -1,$$

where $\overline{PQ}/\overline{QR}$ denotes the ratio of directed lengths associated with any three collinear points P, Q, R.

Σας ευχαριστώ!