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Aim of this Presentation

Aim of this presentation is the study of hemodynamics in a pathological vessel
under the influence of a uniform magnetic field. To solve the system of equations
describing the problem, the numerical method of Finite Volumes has been
utilized.
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Introduction to Fluid Dynamics
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Computational Fluid Dynamics and Fluid Structure Interaction

Computational fluid dynamics (CFD) is a branch of fluid mechanics that uses numerical analysis
and data structures to analyze and solve problems that involve fluid flows.

Fluid Structure Interaction (FSI) is the way to describe the interaction between the fluid and the
solid interface eg. blood and the arterial wall.

Some of the well-known examples are:

• aerofoil design,

• wind turbines,

• flow in arteries!

• design of mechanical heart valves!
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Introduction

Anatomy of an Aneurysm
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Anatomy of an Aneurysm

An aneurysm is a bulge in a blood vessel caused by a weakness in the blood vessel wall.

• The arterial wall can be weakened by the pressure of the blood.
• The most common locations are the arteries supplying the brain and the heart.
• There’s a risk that a larger aneurysm could burst (rupture) and lead to massive internal bleeding.

Figure 1: Comparison between a normal and an aneurysmal vessel.
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Anatomy of an Aneurysm

Suspicion of an unrupted aneurysm, can be confirmed through diagnostic imaging, such as an Magnetic
Resonance Imaging (MRI) [3]. Thus, patients with aneurysm are more likely to be exposed to the effect of the
magnetic field.

• Clinical MRI scanners 0.5− 3.0 T.
• Research MRI scanners 7.0− 11.7 T.

This study focuses on fusiform aneurysms.

Figure 2: Types of aneurysms.
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Mathematical Modelling
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Navier-Stokes Equations

The problem can be described by the following system of equations.

continuity equation
∂ρ
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+

∂(ρũ)
∂x̃

+
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∂ỹ

= 0, (1)
x-momentum equation
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y-momentum equation
∂ (ρṽ)
∂ t̃
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∂x̃
+

∂ (ρṽṽ)
∂ỹ

= −
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∂ỹ

+
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∂
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(
µ
∂ṽ
∂x̃

)
+

∂

∂ỹ

(
µ
∂ṽ
∂ỹ

)]
, (3)

• q̃ = (ũ, ṽ) is the velocity vector,

• p is the kinematic pressure,

• ρ is the density,

• µ is the dynamic viscosity,

• σ is the electrical conductivity,

• B is the magnetic field,

• σũB2 is the x-component of the Lorentz force.
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Mathematical Modelling

Dimensionless Equations
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Dimensionless Equations

Using the following dimensionless parameters,

x = x̃
R , y = ỹ

R , t = t̃
R/u0

, u =
ũ
u0

, υ =
υ̃

u0
, p =

p̃
ρu20

, c = ρ

ρ0
, (4)

u0 is the characteristic inlet velocity,
R is the inlet length of the aneurysmal geometry.
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Dimensionless Equations

The initial system of equations is transformed to a dimensionless form

continuity equation
∂c
∂t

+
∂(cu)
∂x

+
∂(cv)
∂y

= 0, (5)

x-momentum equation
∂u
∂t

+
∂ (uu)
∂x
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∂ (uv)
∂y

= −
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∂x

+
∂
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1
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∂x

)
+

∂
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(
1
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∂u
∂y

)
− Mu, (6)

y-momentum equation
∂v
∂t

+
∂ (uv)
∂x

+
∂ (vv)
∂y

= −
∂p
∂y

+
∂

∂x

(
1
Re

∂v
∂x

)
+

∂

∂y

(
1
Re

∂v
∂y

)
, (7)

Re is the Reynolds number, Re =
u0R
ν
,

M is the magnetic parameter, M = σRB2
ρu0
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Mathematical Modelling

Generalized Curvilinear Coordinates (GCC)
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Generalized Curvilinear Coordinates

Applying the generalized curvilinear coordinates (GCCs) transformation, the system of equations
under consideration is written in a body–fitted approach. This is possible due to the fact that a
local transformation from one domain, e.g. the physical domain, to a normalized one, e.g. the
transformed domain, can be obtained, as depicted in Figure 3.

Figure 3: The local transformation from the physical to the transformed domain.
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Generalized Curvilinear Coordinates

The problem can be described using the following system of equations.

continuity equation
∂J
∂t

+
∂U
∂ξ

+
∂V
∂η

= 0, (8)

x-momentum equation
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(9)
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,

(10)

where U = (u− ẋ) yη − (v− ẏ) xη, V = (v− ẏ) xξ − (u− ẋ) yξ and J = xξyη − xηyξ .
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Mathematical Modelling

Boundary Conditions
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Boundary Conditions

The boundary conditions for this problem are

Figure 4: An outline of the geometry and the boundary conditions applied on the aneurysmal model.

• at the inlet: u(y, t) =
[
1−

( y
R

)2]
× velocity waveform(t), υ = 0, 0 ⩽ y ⩽ R,

• at the moving wall : u = ẋ, υ = ẏ, kinematic boundary condition,

• at the symmetry : ∂u
∂y = 0, υ = 0, for t ≥ 0,

• at the outlet : p = pressure waveform(t), ∂u
∂x = 0, ∂υ

∂x = 0
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Finite Volume Method

The corresponding version of the x-momentum equation is:
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p
)
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(11)
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Numerical Considerations

Numerical Considerations:

• a Finite Volume Method algorithm was utilized for the solution
• a numerical code was developed in MATLAB (MathWorks, Natick, MA, USA)
• used parallel programming
• Intel Xeon processors (4210R, 2.40GHz, 24 CPUs)
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Results

The following scenarios were studied:

• 4 cardiac cycles

• 2 pulsatilities (low and medium, with a 5.5% and 14% change of the initial diameter)

• gradual increase of the magnetic field at 8 (B = 0, 4, 8T)

Additionally, each cardiac cycle is divided in
three intervals:

αʹ systolic acceleration

βʹ systolic deceleration

γʹ diastole
Figure 5: Phases of the cardiac cycle.
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Flow Video

video

Konstantina Kyriakoudi • 30th DSC | Results • 15/23

https://drive.google.com/file/d/1n_RhW-g4eBNF_qdSuu5LoAzbotWcj_Dy/view?usp=drive_link


Streamlines

Figure 6: Flow with low and medium pulsatility during systole for B = 0, 4, 8T.
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Velocity and Pressure Changes

Avg Velocity Systolic Acceleration Systolic Deceleration Diastole
Vel Decrease (%) Vel Decrease (%) Vel Decrease (%)

B = 0T 0.5720 - 0.4566 - 0.4279 -
B = 4T 0.5659 1.06 0.4511 1.20 0.4211 1.58
B = 8T 0.5638 1.43 0.4479 1.90 0.4178 2.36

Avg Pressure Systolic Acceleration Systolic Deceleration Diastole
Pres Increase (%) Pres Increase (%) Pres Increase (%)

B = 0T 1.0951 - -1.8691 - 1.0025 -
B = 4T 1.3584 24.04 -1.4558 22.11 2.0294 102.43
B = 8T 2.0530 87.47 -0.2503 86.60 5.3087 429.54

Table 1: Velocity and Pressure changes for the fourth cardiac cycle for medium pulsatility.
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WSS

The WSS is a metric to quantify the frictional forces acting on the abdominal
aortic aneurysm wall.

τwall =
µR
u0

(
∂u
∂y +

∂v
∂x

)
(12)

Avg WSS Systolic Phase Diastolic Phase
Low Medium Low Medium

B = 4T 13.19 22.22 31.73 34.39
B = 8T 35.16 31.94 67.06 74.52

Table 2: Average WSS values.
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Velocity Profile

Figure 7: Velocity profile forB = 0, 4, 8T.
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Speed Up

Figure 8: Speedup test and time reduction for medium pulsatility results for 1− 20 CPUs.
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Conclusions
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Conclusions

In this study we:

• focused on the 2D Navier-Stokes equations and utilizing the Generalized Curvilinear
Coordinates and the Finite Volume Method.

• analysed the changes that occur under the presence of the magnetic field on a biomedical
application.

• examined the velocity and pressure fields and noticed a substantial influence by the pulsating
wall and the magnetic field.
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Future Steps

Our next goals are:

• extend our research in a 3D model.

• add magnetic field in all dimensions so it
could better describe an MRI scan.
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THANK YOU!

Questions?
k.kyriakoudi@uoi.gr
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