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Introduction and Motivation

We wish to study mechanical engineering models with
non-analytic potentials:

1 1–D lattices with graphene type interactions.
2 1–D lattices whose interactions obey Hollomon’s law of

“work hardening”.
3 Periodically forced 1–D lattices with hysteretic damping.

We aim to understand:
First destabilization of simple periodic orbits (SPOs): Local
and global chaos
Supratransmission and wave packet spreading in
nonlinear arrays with hysteretic damping
Breathers and Breather “arrest” in nonlinear arrays with
hysteretic damping
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The graphene model

A single graphene oscillator is often described in the literature
as a 1–DOF mass-spring system:

mẍ = −Kx + Dx |x |, K > 0, D > 0

In the N− particle case, with nearest- neighbor interactions:

Graphene Hamiltonian:

H =

n∑
j=1

mj

2
ẋj

2 +

n∑
j=0

K

2

(
xj+1 − xj

)2
−
D

3
|xj+1 − xj |

3, (1)

K : elastic constant, D : material stiffness, xj : displacement
of the j−th particle from its equilibrium position.

and impose fixed boundary conditions: x0(t) = xn+1(t) = 0,∀t.
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Potential energy for the N=2 oscillator system

V (x) =

N∑
i=0

K

2
(xi+1 − xi)2 −

D

3
|xi+1 − xi |

3. (2)

Clearly, for large displacements, there will be an escape energy,
where the lattice is expected to break. Consider, for example,
the case N = 2:

Figure 1: Potential surface of the 2-particle graphene model, with escape
energy E(c)

n = 0.33 . . .. Left: 2-d cross sections. Right: The 3-d potential
surface. The SPOs we will examine later are orbits along symmetry lines
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Graphene oscillations are very stable!

Figure 2: Poincaré Surfaces of Section (PSS) at E=0.3333 and
E=0.3334, slightly below and above the escape energy threshold
indicate highly stable dynamics! The chaotic regions are very small!
The centers of big islands are examples of SPOs.
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Examples of Simple Periodic Orbits

 

 

Examples of SPO solutions: The SPO1 is shown 

in the middle with N=7 oscillators. 



6/25

ENERGY TRANSPORT IN 1-D HAMILTONIAN LATTICES: FROM PHYSICS TO ENGINEERING (Non-Analytic Potentials)
Arrays of Graphene–type interactions

Chaos near the middle oscillator of SPO1 N = 5
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Figure 3: Phase plots (xi(t), ẋi(t)), for i ∈ {1,2,3} at (a) E = 0.17
(stability), then right after instability (b) E = 0.21 (weak chaos), and
(c) E = 0.22 (strong chaos), for deviations of the SPO1 mode of the
graphene-type Hamiltonian.
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Weak and strong chaos near the middle oscillator
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Figure 4: A “figure-8” chaotic orbit near the middle oscillator of an
N = 5 lattice starting at a distance |ϸ| = 10−5 from the SPO. Note the
small - scale (“weak”) chaos, while, starting at (|ϸ| = 10−2), the orbits
spread over much larger (“strongly”) chaotic domains.
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Identifying the destabilization of SPO1 for N=5
using the maximal Lyapunov exponent
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Figure 5: Time evolution (in log-log scale) of the maximal Lyapunov
exponent for SPO1 at energies (a) E = 0.1305, and (b) E = 0.2130,
below and above of the orbit’s first destabilization, for the graphene
lattice (1). In both panels the dashed straight line is ∝ t−1. The
inserts show the time evolution of the relative energy error Er (t).
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Distinguishing “weak” from “strong” chaos for N=5
using the spectrum of Lyapunov exponents
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Figure 6: The spectrum of LEs Λ(k), k = 1, 2, 3, 4, 5, of the “figure-8”
(red curve) and the large scale chaos (gray curve) orbits of Fig. 6, at
distances d = 10−5 and d = 10−2 from the SPO1, respectively. The
dashed horizontal line represents the level above which we consider a
LE to be strongly positive.
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Destabilization Energy of SPO1 as N increases
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Figure 7: Observe how, as expected, when the number of particles N
increases the instability threshold of the SPO1 and SPO2 orbits of the
graphene lattice decrease to zero following power laws that tend to
coincide.
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The surprising Hollomon lattice model!

Hollomon model Hamiltonian:

H =

n∑
j=1

mj

2
ẋj

2 +

n∑
j=0

K

2

(
xj+1 − xj

)2
+

λ

1 + q
|xj+1 − xj |

1+q, (3)

0 ≤ q < 1 associated with Hollomon’s law, will be set to
q = 1/3.
λ > 0: no escape, bounded motion.

For small displacements, the Hollomon interactions∣∣∣xj+1 − xj
∣∣∣q+1, 0 ≤ q < 1, are stronger than the harmonic terms

and lead to instability for low energies.
Remarkably, as the energy grows, the harmonic terms become
dominant leading to stability of the SPOs!.
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SPO1 and SPO2 stabilize at high energy values!
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Figure 8: Logarithmic plot of the approximate energies per particle
hcN = EcN/N where the first stabilization of SPO1 and SPO2 occurs,
showing a power law behavior of the form ∝ N�, with � ≈ 2.68 (dashed
line).
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Model I: Local hysteretic damping with periodic
forcing

Hysteretic damping: Total linear force is not in phase with
x(t); energy loss per cycle is independent of the driving
frequency of linear oscillations.
Applications: seismic behavior, composite beam modeling,
rotor dynamics and material modeling.

Reid’s model (1956)

Mẍ + c
∣∣∣∣∣xẋ

∣∣∣∣∣ẋ + kx = Mẍ + kx
(
1 +

c

k
sgn(xẋ)

)
= F sinωt, (4)

where sgn(·) is the sign function, c is the damping coefficient,
and k quantifies the (linear) stiffness.
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The nonlinear 1 - DOF Reid’s model

Mẍ + c
∣∣∣∣∣xẋ

∣∣∣∣∣ẋ + kx + ϸx3 = f sinωt.

The symmetric cubic nonlinearity allows for no escape of
solutions to infinity.
Relatively high damping→ a unique stable periodic
solution with period T * = 2π/ω
Relatively low damping→ emergence of stable periodic
orbits whose period is a multiple of T * (forcing period).
A highly complex basin of attraction emerges.
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Basins of attraction
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Figure 9: Basins of attraction of the modified Reid’s model for
parameters (c, k, f, ω, ϸ) = (0.01,0.3,1.1,1.3,0.1). We have used
different coloring for orbits with period T = T * (white), red and purple
for T = 2T *, blue for T = 3T * and green for T = 5T *

.
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Supratransmission in Model I of nonlinear Reid
oscillators

Equations of motion for N–DOF system
For j = 1, . . . , N :

Mẍj = −c
∣∣∣xj∣∣∣ tanh{τẋj} − k

(
−xj−1 + 2xj − xj+1

)
(5)

− ϸ
(
−

(
xj+1 − xj

)3
+

(
xj − xj−1

)3)
,

subjected to the boundary values at the origin and the end:

x0(t) = f sinω t and xN+1(t) = 0, t ∈ T ⊆ R + .
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Supratransmission of the full Reid’s lattice
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Figure 10: Graphs of the displacement solutions of Eqs. (5) at critical
amplitude 2.7 < f < 2.8 , selecting ω > 2 values outside the forbidden
band gap, 0 < ω < 2.
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Damping does not affect Supratransmission!
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Figure 11: Critical forcing amplitudes fcr of model I as functions of ω,
with (k, ϸ) = (0.3,0.1). For different damping parameters
c ∈ {0.01,0.1}, and N = 200 oscillators.
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Model II: Non-local hysteretic damping

We now turn to Model II whose hysteretic damping terms are
nearest neighbor dependent according to the difference
operators ∆−xj := xj − xj−1 and ∆+xj := xj − xj+1, and similarly,
∆−ẋj := ẋj − ẋj−1 and ∆+ẋj := ẋj − ẋj+1 for the velocity terms. Thus
the equations of motion become

Mẍj + c
(
∆−xj sgn(∆−xj∆−ẋj) + c ∆+xj sgn(∆+xj∆

+ẋj)
)

(6)

+ k
(
∆−xj + ∆+xj

)
+ ϸ

((
∆−xj

)3
+

(
∆+xj

)3)
= 0

Model II is subject to the same boundary conditions as model I:

x0(t) = f sinω t and xN+1(t) = 0, t ∈ T ⊆ R+ (7)
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Supratransmission in model II: No difference with
model I
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Figure 12: Plots of supratransmission critical amplitudes fcr as
functions of the forcing frequency ω for Models I and II, for
ϸ ∈ {0.01,0.1} and (k, c) = (0.3,0.01). The curves corresponding to
the same ϸ value practically overlap.
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New Result: Breather propagation and breather
arrest

Recently, we discovered in the mechanical engineering
literature (2018 - 2021) several papers discussing the
phenomenon of Acoustic Non-reciprocity in mechanical lattices
like our own, but with viscous damping.
ẍ1 + dẋ1 + kx1 + C(x1 − x2)3 = F0f̂ (t),
ẍi + dẋi + kxi + C(xi − xi−1)3 + C(xi − xi+1)3 = 0
with initial conditions xi(0+) = 0, ẋi(0+) = 0, i = 1,2, ..., n and
f̂ (t) = sin(ωt) for t = [0, π/ω)] and zero for t > π/ω !

They observed the existence of localized oscillations (breathers),
which start from the first few particles and travel down the
lattice, for short times and then damp out to zero leading to
(breather arrest).
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Breathers and breather arrest in our Models I and II
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Figure 13: Spatiotemporal evolution of the displacement solutions of
the impulsively forced Model I (a) and Model II (b). The parameters
are set to (c, k, f, ω, ϸ) = (0.01,0.3,3.5,4,0.1). Only the first 50 of the
N = 200 particles are depicted.
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Breathers and breather arrest in our Models I and II
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Figure 14: Temporal evolution of the displacement solutions of our
impulsively forced Model I (a) and Model II (b) for the same
parameters as above. The breather solutions are clearly visible but
our results of Model II (non-local hysteretic damping) are closer to the
results of models with non-local viscous damping in the literature!
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Conclusions of Part I: Analytic potentials

1 In the FPU �− lattice the SPOs we studied are stable at low
energies and experience a first destabilization at energies per
particle EcN/N that decrease, as N increases, by power laws
either ∝ N−1 or ∝ N−2.

2 In the FPU model chaotic orbits near an SPO that has just
destabilized do not immediately spread over large domains in
phase space, but remain for long times close to the SPO
exhibiting what one might call “weak” chaos

3 In weakly chaotic domains the probability density functions of
the orbits follow Tsallis statistics, while in strongly chaotic
regimes we observe Boltzmann-Gibbs statistics.

4 In the phenomenon of supratransmission the range of
interactions as well as the presence of an on site potential play
an important role.
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Conclusions of Part II: Non-analytic potentials

1 In the graphene-type lattice the SPOs are stable at low energies
and experience a first destabilization at energies per particle
EcN/N that decrease, as N increases, by power laws with nearly
equal exponents, i.e. ∝ N−1.72.

2 In the graphene model the motion near unstable SPOs does not
immediately spread over large domains in phase space, and
exhibits what one might call “weak” chaos.

3 The corresponding results for the Hollomon lattice are strikingly
different: Both SPO1 and SPO2 are unstable at low energies and
first stabilize along curves of the form EcN/N ∝ N

2.68, (for an
interaction exponent with q = 1/3).

4 Reid’s lattice of nonlinear oscillators with hysteretic damping
exhibits important phenomena like supratransmission and also
Breathers and Breather Arrest similar to models with viscous
damping.
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Thank you!
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