

Modeling Brain Diseases with Nonlinear Dynamical Systems to Optimize Medical Treatments

Thanos (Athanasios) MANOS

ETIS Lab, ENSEA, CNRS, UMR8051, CY Cergy-Paris University, Cergy, France

Email: thanos.manos@cyu.fr - Website: https://sites.google.com/site/thanosmanos/

"*30th Summer School – Conference "Dynamical Systems and Complexity*" Calandra University Camping, Halkidiki, 28/8/2024 – 6/9/2024

Happy 70th anniversary Marko

Outline *"Modeling Brain Diseases with Nonlinear Dynamical Systems to Optimize Medical Treatments"*

- ❖ **Mathematical modeling** is a crucial tool for understanding the **fundamental mechanisms** of the human & animal brain.
- ❖ Models based on **ordinary differential equations** can capture and describe the **dynamic interactions** between **neurons** within specific brain regions or across different brain areas.
- ❖ We present recent studies demonstrating the usefulness of these **models in computationally understanding** and **mitigating** symptoms of two brain diseases:
	- ➢ **Parkinson's disease** (**Part I**) and
	- ➢ **Epilepsy** (**Part II**)

Part I - Parkinson's disease

Clinical motivation

Parkinson's disease (loss of neurons → dopamine): Neurodegenerative disease of the **substantia nigra** that results in a characteristic tremor at rest and a general paucity of movement.

pathological neuronal synchrony

PD patient, 48ys tremor right hand

post-operative, directly before **CR** stimulation

Treatment with Neuromodulation

➢ **Coordinated Reset (CR) neuromodulation** means to: consecutively deliver brief **pulses to different locations** of the brain to sequentially **reset the phases** of the different stimulated subpopulations.

- ➢ **CR neuromodulation** intends to induce a **desynchronization** which starts a process of **unlearning** of both pathological **neuronal synchrony** and pathological **synaptic connectivity**.
- ➢ **CR neuromodulation** can be applied via **electrical stimulation** (invasive; e.g. DBS) or via **sensory stimulation** (non-invasive; e.g. acoustic, vibro-tactile,

Tass PA, *Biol. Cybern.* 89:81 (2003) / Tass PA, *Prog. Theor. Phys. Suppl*. 150:281 (2003)

Vibrotactile Coordinated Reset Stimulation Induces Sustained Cumulative Benefits in Parkinson's Disease

Hypothesis: Taking into account **structural plasticity** reveals **memory-type effects** of the network's treatment susceptibility.

Brain scales

Which neuron model to choose?

A brief comparison of the neuro-computational properties of spiking and bursting models

FLoating-point **O**perations **P**er **S**econd: a measure of computer performance

Phase space

Dynamical system: $\dot{x} = f(x)$

Attractors capture all the characteristics of the activity of the system: **steady state**, **periodic**, **quasiperiodic** and **chaotic**.

A model for Deep Brain Stimulation

MT, Diaz-Pier S, Tass PA, *Front. Physiol*. 12:716556 (2021)

STN/GPe network - Terman-Rubin model

MT, Diaz-Pier S, Tass PA, *Front. Physiol*. 12:716556 (2021)

Spike timing-dependent plasticity (STDP)

Synaptic plasticity: the ability of synapses to **strengthen** or **weaken** over time, in response to increases (**↑**) or decreases (**↓**) in their activity.

The **synaptic weights** w_{ij} are **dynamical variables** that depend on the time

difference $\left(\varDelta t_{ij}=t_{j}^{f}-t_{i}^{f}\right)$ \int between the firing (onset) of the *post- and pre-* \int

synaptic spikes $({\rm}t_{i}^{f} \ \& \ t_{j}^{f}$). *"Cells that fire together → wire together"* $2.0\,$ potentiation

- We restrict the synaptic weights (within the STN neurons) on the interval, **avoiding** in this way a **non-physiological unbounded** increase or decrease.
- The (de)synchronized dynamics are **stable** with the above rule and parameter values resulting in **multistability** (\rightarrow multiple stable equilibrium points).

Structural plasticity

Physical creation/deletion of synapses (during **brain development**, **learning** and **recovery after lesions**).

Synaptic elements (**axonal boutons** and **dendritic spines**) grow and recede following **homeostatic rules** based on the **mean electrical activity**/**firing rate** (FR) of the neuron: − $FR(t)$ $+ \beta$, if the neuron fires

 dFR

 $\tau_{\rm SP}$

 dt

Gaussian growth rate:

$$
\frac{dz}{dt} = v_{\rm SP} \left[2e^{-\left(\frac{\rm FR(t) - \xi}{\zeta}\right)^2} - 1 \right]
$$

: number of synaptic elements v_{SP} : max. amplitude of the growth rate $\zeta=$ $\varepsilon-\eta$ $2\sqrt{\ln 2}$, $\xi = (\varepsilon + \eta)/2$

The global connectivity is updated on a **much slower timescale** than changes in electrical activity.

Butz M, van Ooyen A, *PLoS Comput. Biol.* 9:e1003259 (2013) Diaz-Pier S et al., *Frontiers in Neuroanatomy*, 10(57):1662 (2016)

$$
= \left\{ \begin{array}{c}\n\text{c}_{\text{SP}} \\
-\frac{\text{FR}(t)}{\tau_{\text{SP}}}, & \text{otherwise} \\
\hline\n\text{c}_\text{P}:\text{calcium intake const.} \\
\tau_{\text{SP}}:\text{[Ca] decay time const.} \\
\text{c}_\text{SP}:\text{[Ca] decay time const.} \\
\text{c}_\text{P, 1.0}\n\end{array}\right.
$$
\n
$$
\begin{array}{c}\n\text{c}_{\text{SP}}:\text{[Ca] decay time const.} \\
\text{d}_\text{P, 1.0}\n\end{array}\n\right\}
$$
\n
$$
\begin{array}{c}\n\text{c}_{\text{P, 1.0}}\\\n\text{d}_\text{P, 1.0}\n\end{array}\n\right\}
$$
\n
$$
\begin{array}{c}\n\text{d}_\text{P, 1.0}\n\end{array
$$

The Kuramoto order parameter

- ➢ One measure of synchrony is the **Kuramoto order parameter** (*R*) that indicates the **level of synchrony** of a **collection of phase oscillators**.
- ➢ We define the order parameters simply by **averaging** the *complex numbers that represent the phase of the oscillators on the unit circle*.
- \triangleright Given a collection of *N* phase oscillators with phases θ_j for $j = 1, 2, ... N$, the positions of the oscillators on the unit circle are represented by the complex numbers $e^{i\theta_j}$, we define the **Kuramoto order parameter** as:

$$
R(t) = \frac{1}{N} \left| \sum_{j=1}^{N} e^{i\theta_j} \right|
$$

CR sequences with only STDP versus STDP+SP

By combining **STDP+SP**, we increased the plasticity potential of the system to explore different connectivity configurations, allowing **long-term structural changes** and **short-term learning** in the **same simulation**.

MT, Diaz-Pier S, Tass PA, *Front. Physiol*. 12:716556 (2021)

 $\begin{tabular}{ll} \hline \textbf{0} & STN neurons \\ \hline \textbf{II} & GPe neurons \\ \hline \end{tabular}$

Part II - Epilepsy

Epilepsy

- ❑ Common neurological disorder. ❑ **Epileptic seizures**:
	- \rightarrow Excessive electrical discharges.
- ❑ **Epileptic seizures** arise from an **imbalance** in the regulation of **excitation** and **inhibition**.
- ❑ **Symptoms**: language troubles, motor troubles, loss of consciousness etc.

CA: Cornu Ammonis (an earlier name of the hippocampus) DG: Dentate Gyrus

- \Box 30-40% of the patients are drug resistant: resective surgery. Resection of the entire **Epileptogenic Zone** (EZ).
- ❑ **Challenge** → **optimization of the resection**.
- \Box Anti-seizure drugs \rightarrow suppress epileptiform spikes and improve synaptic and cognitive function.
- \Box Neuromodulation \rightarrow manages seizure propagation.

In this work:

❑We computationally study how the **location of an EZ area** and its **connectivity** relevance in the network are related to **widespread seizure propagation** in a mice brain.

- ❑We search for strategies that can **confine widespread seizures** by either:
	- **removing the minimum amount of brain tissue** (by blocking certain connections in the network) or
	- **suppress the hyperexcitation** (loosely mimicking an anti-seizure drug or neuromodulation effect).

Large brain simulations

- ❖ Computational platform: **The Virtual Brain**
- ❖ Rodent species are often regarded as suitable analogues for humans due to the significant similarities in brain structure and connectivity between the two.
- ❖ Mice brain Structural Connectivity from the Allen Institute.

The Epileptor model

$$
\dot{x}_{1,i} = y_{1,i} - f_1(x_{1,i}, x_{2,i}) - z_i + I_1, \n\dot{y}_{1,i} = 1 - 5x_{1,i}^2 - y_{1,i},
$$

$$
\dot{z}_i = \begin{cases} r(4(x_{1,i} - x_{0,i}) - z_i - 0.1z_i^7) + K \sum_j c_{ji}(x_{1,i} - x_{1,j}) & \text{if } z_i < 0, \\ r(4(x_{1,i} - x_{0,i}) - z_i) + K \sum_j c_{ji}(x_{1,i} - x_{1,j}) & \text{if } z_i \ge 0, \end{cases}
$$

$$
\dot{x}_{2,i} = -y_{2,i} + x_{2,i} - x_{2,i}^3 + I_2 + 0.002g(x_{1,i}) - 0.3(z_i - 3.5), \quad (4)
$$

$$
\dot{y}_{2,i} = \frac{1}{\tau}(-y_{2,i} + f_2(x_{2,i})), \quad (5)
$$

 $\dot{g}(x_{1,i}) = -0.01(g(x_{1,i}) - 0.1x_{1,i}),$ where

$$
f_1(x_{1,i}, x_{2,i}) = \begin{cases} 3x_{1,i}^3 - x_{1,i}^2 & \text{if } x_{1,i} < 0, \\ (x_{2,i} - 0.6(z_i - 4)^2)x_{1,i} & \text{if } x_{1,i} \ge 0, \end{cases}
$$

and

 $f_2(x_{2,i}) = \begin{cases} 0 & \text{if } x_{2,i} < -0.25, \\ 6(x_2 + 0.25) & \text{if } x_2 \ge -0.25. \end{cases}$ **Phenomenological model**: (*x1,i*, *y1,i*, *zⁱ*) **bursting neuron** (fast) (*x2,i*, *y2,i*) **spiking neuron** (slow) *x*2 *-x*1 mimics the membrane potential *z*: slow permittivity (dictates how close the system is to the seizure threshold)

The Epileptor model: bifurcation diagram

The Epileptor model: Epileptogenic Zone (EZ)

- **Epileptogenicity** x_0 defines the distance to SN bifurcation.
- **Propagation Zone (PZ)** $(x_0 < -2.06)$: healthy brain areas.

Seizures are generated by either a **localized** production of excessive discharges occurring in **one area or hemisphere** (*focal*), or simultaneously in both **hemispheres** (*generalized*), that can **either remain localized or propagate in the brain network** (**widespread seizure**).

Seizure propagation: widespread seizure

- Network of coupled Epileptors
- Epileptogenic Zone: left field **CA1**

focal seizures: seizures that start in **one** brain area and **may or may not remain localized**

Seizure propagation: localized seizure

- Network of coupled Epileptors
- Epileptogenic Zone: left field **CA3**

Connectivity properties of the EZs

• Testing all possible EZ of the Allen SC + 20 varied connectomes

Widespread seizure prevention

EZ: l CA1

6000

5000

 $4000 - 5$

3000 ξ

 $-2000\frac{16}{9}$

 $\frac{1}{2}$ 1000

Standard resection strategy:

Removal of a small portion of the brain.

- •Memory and language
- •Visual impairment
- •Depression/mood changes
- •Headache
- •Stroke

Our strategies:

Minimal modification of the brain structure:

- **Selective edge resection** (milder surgical approach)
- **EZ outgoing weight reduction** (neuromodulation approach)

Widespread seizure prevention

Widespread seizure prevention with edge removal Resection strategies:

- Blocking pathways in both hemispheres
- Removing the strongest connection

Courson, Quoy, Timofeeva, **MT** *Front. Comput. Neurosci.* 18:1360009, 2024

4000

€ 3000

 $2000 \frac{15}{2}$

 $1000 \in$

EZ connectivity after edge resection and outgoing weight reduction – CA1

EZ connectivity after edge resection and outgoing weight reduction - DG

Courson, Quoy, Timofeeva, **MT** Front. Comput. Neurosci. 18:1360009, 2024

Take home messages

Nonlinear Dynamical Systems can model brain healthy and diseased brain activity and be used to optimize medical treatments

Part I (Parkinson's Disease)

- \triangleright Therapy and rehabilitation can employ structural plasticity to counteract maladaptive plastic changes and ultimately restore brain function.
- \triangleright Structural plasticity reveals memory-type effects of the network's treatment susceptibility and predict dosage-dependent phenomena relevant for clinical studies.

Part II (Epilepsy)

- \triangleright Seizures can be kept constrained around the EZ region \rightarrow selectively removing (blocking) specific connections informed by the structural connectome and graph network measurements or by locally reducing outgoing connection weights of EZ areas.
- \triangleright Such approaches may help in minimizing surgical or medical intervention while simultaneously preserving the original structural connectivity and maximizing brain functionality.

Collaborators

Articles

- **Manos T.**, Diaz-Pier S., Tass P.A. Front. Physiol. 12:716556, 2021
- Courson J, Quoy M., Timofeeva Y., **Manos T.** Front. Comput. Neurosci. 18:1360009, 2024

Acknowledgments & Funding

- ❑ **Helmholtz Association** Helmholtz Portfolio Theme "Supercomputing and Modeling for the Human Brain"
- ❑ **European Union's Horizon 2020** 720270 (HBP SGA1) and 785907 (HBP SGA2)
- ❑ **Labex MME DII** (ANR-11-LBX-0023-01, ANR-11-LBX-410 0023-01)
- ❑ **CNRS** (research semester in the IPAL Lab in Singapore)
- ❑ **UKRI MRC Project Grant** MR/T002786/1
- Our computations were performed at Forschungszentrum
- Jülich: **Juwels/Jureca** supercomputers & **Osaka cluster** (CY).

Thank you for your attention! **1996** Thank you for your attention!