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ABSTRACT

| shall explain how chaos (chaotic behaviour) can emerge in deterministic systems of
classical dynamics. It is due to the sensitive dependence on initial conditions,
meaning that two nearby initial states of a system develop in time such that their
positions (states) separate very fast (exponentially) in time. After a finite time
(Lyapunov time) the accuracy of orbit characterizing the state of the system is
entirely lost, the system could be in any allowed state. The system can be also
ergodic, meaning that one single chaotic orbit describing the evolution of the system
visits any other neighbourhood of all other states of the system.

In this sense, chaotic behaviour in time evolution does not exist in quantum
mechanics. However, if we look at the structural and statistical properties of the
quantum system, we do find clear analogies and relationships with the structures of
the corresponding classical systems. This is manifested in the eigenstates and energy
spectra of various quantum systems (mesoscopic solid state systems, molecules,
atoms, nuclei, elementary particles) and other wave systems (electromagnetic,
acoustic, elastic, seismic, water surface waves etc), which are observed in nature and
in the experiments.
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WHAT IS CHAOS IN A DETERMINISTIC DYNAMICAL SYSTEM?

By a dynamical system we mean a system whose state is defined by a point in the
space of all possible states (phase space), and the motion (its evolution) in the past
and in the future is entirely determined by the local law of motion.

The law of motion can be either a differential equation or a difference equation. If
such a law is known, and is exact, then the system is called deterministic.

EXAMPLE: The motion of a planet on a Kepler ellipse around the Sun, neglecting
the influence of other planets, is a deterministic system, described by the Newtonian
law of gravity for the attractive force, and the Newtonian equations of motion.

This is an example of a stable and regular deterministic system, which is
integrable. It is a gravitational two-body problem.

If we switch on the attractive gravitational force by another large object (planet), the
system is still entirely deterministic, but no longer integrable and regular: it is

nonintegrable and chaotic. This is the so-called famous gravitational three body
problem (system) proven to be chaotic by Henri Poincaré in the early 20th century.
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The Solar System of 8 (or 9) planets (out of scale)

Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, (Pluto)
On the short time scale: the trajectories are ellipses (Kepler)

On the long run, the ellipses can stretch or shrink, rotate and tilt, even in a
chaotic way.
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The divergence/separation of nearby orbits in regular and chaotic systems are
drastically different:

Slow: Linear in regular systems: Separation ot
Fast: Exponential in chaotic systems: Separation o exp(vt)
Lyapunov exponent = v, and Lyapunov time = %
For times much larger than Lyapunov time the motion is unpredictable
Example: In the case of Pluto: Lyapunov time =~ 20 million years

Wisdom and Susskind (1988) and Jacques Laskar (since 1990)

On the long run for certain initial conditions the planets and other bodies like
asteroids and comets might move chaotically and collide with each other, or
escape from the Solar System.

Nevertheless, in the case of Earth, we know that the motion is stable and
regular, on an almost circular orbit, over about 5 billion years. This is crucial
for the stability of climate and existence of life.
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Motivation by the example of a simple dynamical system

Two-dimensional classical billiards:

A point particle is moving freely inside a two-dimensional domain
with specular reflection on the boundary upon the collision:

Energy (and the speed) of the particle is conserved.

A particular example of the billiard boundary shape as a model system:

Complex map: z —» w, |z| =1

w =z + \z2
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QUANTUM CHAOQOS: Motivation by the simple example

Two-dimensional quantum billiards: a point particle trapped in a
two-dimensional box

Helmholtz (Schrodinger) equation with Dirichlet boundary conditions

2 2
e+ 5E+ By =0

with ¢ = 0 on the boundary

Solutions exist only at the discrete values of E: the eigenenergies.
They are infinitely many, but countable.

This equation also describes the oscillations of an elastic membrane (a drum):
E is the square of the eigenfrequency of the drum. ) is the amplitude.
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Statistical properties of discrete energy spectra with the same density
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Fig.l.8 - Segments of "spectra", each containing 50
levels. The "arrowheads" mark the occurrence of pairs
of levels with spacings smaller than 1/4. See text for

further explanation.

@Mi?ac and Giennont 1984
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One of the most important statistical properties:

Level spacing distribution P(S5)
(after unfolding: the mean density equal to 1):

P(S)dS = probability that S is in the interval [S,S + dS].

Bohigas - Giannoni - Schmit Conjecture (1984):

If the system is classically entirely chaotic, the statistical properties of the
quantum energy spectra are well described by the statistical properties of the
Gaussian random matrices:

GOE for real symmetric matrices and GUE for complex Hermitian matrices.

Meanwhile (after almost 25 years) the conjecture is proven by semiclassical
methods using the Gutzwiller periodic orbit theory:

Universality of the classical unstable periodic orbits in fully chaotic systems
implies universality of quantum spectral fluctuations.
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If the system is of the mixed type, partially regular and partially chaotic, thus
when regular and chaotic regions coexist in the classical phase space, we have
semiclassical theories, which describe the intermediate region between the
Poissonian and GOE/GUE statistics. They are well established and follow the
so-called Principle of Uniform Semiclassical Condensation of Wigner functions
in the quantum phase space (PUSC).

But let us look again at the classical mixed-type systems



-CAMTPE-

@
nYe gr&b& HHameFonian g@‘@ms ~

NV f'/z,‘?éfmﬁ' (&mﬁm?‘f) ok motion. s

B —— 617563%9“” %ff'{;eea’pu
£ (2:"/?) B AJCE@’/fCJ))=M
g e el o
%’ /4,;) ;ﬂ(}} a?&«irra»:, bracke S = 4 ﬂ,;/;/
- By -2 Eg=0
A'ozcy,% TR Ay




CAMTP




CAMTP

Example of mixed type system: Hydrogen atom in strong magnetic field

2 2 2122
e el e“B
g=2_ % B| +
2M, r 2Mm.cC

2
8m€c2'0

B = magpnetic field strength vector pointing in z-direction

r = \/xQ + y? + 22 = spherical radius, p = \/z? + y?* = axial radius

L., = z-component of angular momentum = conserved quantity

2.3

Characteristic field strength: By = m;‘; © =2.35 x 10° Gauss = 2.35 x 10° Tesla

Rough qualitative criterion for global chaos: magnetic force ~ Coulomb force

(Wunner et al 1978+; Wintgen et al 1987+; Hasegawa, R. and Wunner
1989, Friedrich and Wintgen 1989; classical and quantum chaos: R. 1980+)
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CONCLUSION:

CLASSICAL CHAQOS is characterized by the exponential divergence and
sensitive dependence on initial conditions
(positive Lyapunov exponent, v > 0),
and complex structure of the phase space.

Also, chaotic orbits/trajectories are characterized by the positive algorithmic
complexity and are fundamentally unpredictable:

In order to predict a new segment of a trajectory one needs additional
information proportional to the length of the segment itself and independent
of the previous length of the trajectory. The information /(¢) associated with
a segment of trajectory of length ¢ is equal, for large t, to I(t) = ht, where h

is the Kolmogorov-Sinai entropy, which is positive when ~+ > 0, positive

Lyapunov exponent.

QUANTUM CHAOQOS comprizes phenomena in wave systems corresponding to
the classical structures in the phase space, manifested in the short
wavelength limit, and it also implies distinct statistical properties of the
energy spectra associated with those structures.
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Thank you very much!



