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ABSTRACT

Chaos (chaotic behaviour) can emerge in deterministic systems of classical dynamics.
It is due to the sensitive dependence on initial conditions, meaning that two nearby
initial states of a system develop in time such that their positions (states) separate
very fast (exponentially) in time. After a finite time (Lyapunov time) the accuracy of
orbit characterizing the state of the system is entirely lost, the system could be in
any allowed state. The system can be also ergodic, meaning that one single orbit
describing the evolution of the system visits any other neighbourhood of all other
states of the system. In this sense, chaotic behaviour in time evolution does not exist
in quantum mechanics. However, if we look at the structural and statistical
properties of the quantum system, we do find clear analogies and relationships with
the structures of the corresponding classical systems. This is manifested in the
eigenstates and energy spectra of various quantum systems (mesoscopic solid state
systems, molecules, atoms, nuclei, elementary particles) and other wave systems
(electromagnetic, acoustic, elastic, seismic, water surface waves etc), which are
observed in nature and in the experiments. Here we review the basic aspects of
quantum chaos in Hamiltonian systems. We shall focus on the most general
(generic) systems, also called mixed-type systems, as their classical counterparts in
the phase space exhibit regular regions coexisting with the chaotic regions for



complementary initial conditions. We shall review the basic concepts of quantum
chaos in the stationary picture, that is the properties of the eigenstates of the
stationary Schrödinger equation, the structure of wave functions, and of the
corresponding Wigner functions in the quantum phase space, and the statistical
properties of the energy spectra. Before treating the general mixed-type case we shall
review the two extreme cases, the universality classes, namely the regular (integrable)
systems, and the fully chaotic (ergodic) systems. Then the Berry-Robnik (1984)
picture will be presented, and the underlying Principle of Uniform Semiclassical
Condensation (PUSC) of the Wigner functions. Next, we shall consider the effects of
quantum (dynamical) localization, which set in when the classical transport time (like
diffusion time) is longer than the Heisenberg time scale (defined as the Planck
constant divided by the mean energy level spacing). It will be shown
phenomenologically that in the case of chaotic eigenstates in the quantum phase
space (Wigner functions) the energy spectra display Brody level spacing distribution,
where the level repulsion exponent (Brody parameter) goes from zero in the
strongest localization to 1 in the fully extended states. The Berry-Robnik picture is
then appropriately generalized to include the localization effects. Furthermore, the
localization measures of chaotic localized eigenstates have a distribution, which in
the absence of stickiness structures in the classical phase space is well described by
the beta distribution. We neglect, at high energies, the tunneling effects coupling the
regular and chaotic levels, since they are manifested only in low-lying levels, because
the coupling decreases exponentially with increasing energy (or inverse effective
Planck constant). Finally, we show that the relative fraction of mixed-type



eigenstates (classified by their Husimi functions) decreases in the semiclassical limit
as a power law with the decreasing effective Planck constant (or equivalent
semiclassical parameter), in agreement with and confirming PUCS.









Example of mixed type system: Hydrogen atom in strong magnetic field

H =
p2

2me
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B = magnetic field strength vector pointing in z-direction

r =
√
x2 + y2 + z2 = spherical radius, ρ =

√
x2 + y2 = axial radius

Lz = z-component of angular momentum = conserved quantity

Characteristic field strength: B0 =
m2
ee

3c

h̄2 = 2.35× 109 Gauss = 2.35× 105 Tesla

Rough qualitative criterion for global chaos: magnetic force ≈ Coulomb force

(Wunner et al 1978+; Wintgen et al 1987+; Hasegawa, R. and Wunner 1989,
Friedrich and Wintgen 1989; classical and quantum chaos: R. 1980+)









spectral unfolding procedure: transform the energy spectrum to unit mean
level spacing (or density)

After such spectral unfolding procedure we are describing the spectral statistical
properties, that is statistical properties of the eigenvalues.

Two are most important:

Level spacing distribution: P(S)

P (S)dS = Probability that a nearest level spacing S is within (S, S + dS)

E(k,L) = probability of having precisely k levels on an interval of length L

Important special case is the gap probability E(0, L) = E(L) of having no levels on
an interval of length L, and is related to the level spacing distribution:

P (S) = d2E(S)
dS2



The Gaussian Random Matrix Theory

P ({Hij})d{Hij} = probability of the matrix elements {Hij} inside the volume
element d{Hij}

We are looking for the statistical properties of the eigenvalues

A1 P ({Hij}) = P (H) is invariant against the group transformations, which preserve
the structure of the matrix ensemble:

orthogonal transformations for the real symmetric matrices: GOE
unitary transformations for the complex Hermitian matrices: GUE

It follows that P (H) must be a function of the invariants of H

A2 The matrix elements are statistically independently distributed:

P (H11, . . . ,HNN) = P (H11) . . . P (HNN)

It follows from these two assumptions that the distribution P (Hij) must be Gaussian:

There is no free parameter: Universality



2D GOE and GUE of random matrices:

Quite generally, for a Hermitian matrix

(
x y + iz

y − iz −x

)
with x, y, z real

the eigenvalue λ = ±
√
x2 + y2 + z2 and level spacing

S = λ1 − λ2 = 2
√
x2 + y2 + z2

The level spacing distribution is

P (S) =

∫
R3
dx dy dz gx(x)gy(y)gz(z)δ(S − 2

√
x2 + y2 + z2) (1)

which is equivalent to 2D GOE/GUE when gx(u) = gy(u) = gz(u) = 1
σ
√
π

exp(−u2

σ2)

and after normalization to < S >= 1

• 2D GUE P (S) = 32S2

π2 exp(−4S2

π ) Quadratic level repulsion

• 2D GOE gz(u) = δ(u) and P (S) = πS
2 exp(−πS2

4 ) Linear level repulsion

There is no free parameter: Universality





The Main Assertion of Stationary Quantum Chaos
(Casati, Valz-Gries, Guarneri 1980; Bohigas, Giannoni, Schmit 1984; Percival 1973)

(A1) If the system is classically integrable: Poissonian spectral statistics

(A2) If classically fully chaotic (ergodic): Random Matrix Theory (RMT) applies

• If there is an antiunitary symmetry, we have GOE statistics
• If there is no antiunitary symmetry, we have GUE statistics

(A3) If of the mixed type, in the deep semiclassical limit: we have no spectral
correlations: the spectrum is a statistically independent superposition of regular
and chaotic level sequences:

E(k, L) =
∑

k1+k2+...+km=k

j=m∏
j=1

Ej(kj, µjL) (2)

µj= relative fraction of phase space volume = relative density of corresponding
quantum levels. j = 1 is the Poissonian, j ≥ 2 chaotic, and µ1 + µ2 + ...+ µm = 1



According to our theory, for a two-component system, j = 1, 2, we have (Berry and
Robnik 1984):

E(0, S) = E1(0, µ1S)E2(0, µ2S)

Poisson (regular) component: E1(0, S) = e−S

Chaotic (irregular) component: E2(0, S) = erfc
(√

πS
2

)
(Wigner = 2D GOE)

E(0, S) = E1(0, µ1S)E2(0, µ2S) = e−µ1Serfc(
√
πµ2S
2 ), where µ1 + µ2 = 1.

Then P (S) = level spacing distribution = d2E(0,S)
dS2 and we obtain:

PBR(S) = e−µ1S
(

exp(−πµ
2
2S

2

4 )(2µ1µ2 +
πµ3

2S
2 ) + µ2

1erfc(µ2
√
πS

2 )
)

(Berry and Robnik 1984)

This is a one parameter family of distribution functions with normalized total
probability < 1 >= 1 and mean level spacing < S >= 1, whilst the second moment
can be expressed in the closed form and is a function of µ1.









2. Principle of Uniform Semiclassical Condensation (PUSC) of Wigner
functions of eigenstates (Percival 1973, Berry 1977, Shnirelman 1979, Voros 1979,
Robnik 1987-1998)

We study the structure of eigenstates in ”quantum phase space”: The Wigner
functions of eigenstates (they are real valued but not positive definite):

Definition: Wn(q,p) = 1
(2πh̄)N

∫
dNX exp

(
− i
h̄p.X

)
ψn(q− X

2 )ψ∗n(q + X
2 )

(P1)
∫
Wn(q,p)dNp = |ψn(q)|2

(P2)
∫
Wn(q,p)dNq = |φn(p)|2

(P3)
∫
Wn(q,p)dNq dNp = 1

(P4) (2πh̄)N
∫
dNq dNpWn(q,p)Wm(q,p) = δnm

(P5) |Wn(q,p)| ≤ 1
(πh̄)N

(Cauchy-Schwarz inequality)

(P6 = P4)
∫
W 2
n(q,p)dNq dNp = 1

(2πh̄)N

(P7) h̄→ 0 : Wn(q,p)→ (2πh̄)NW 2
n(q,p) > 0



In the semiclassical limit the Wigner functions condense on an element of phase
space of volume size (2πh̄)N (elementary quantum Planck cell) and become positive
definite there.

Principle of Uniform Semiclassical Condensation (PUSC)

Wigner fun. Wn(q,p) condenses uniformly on a classically invariant component:

(C1) invariant N-torus (integrable or KAM): Wn(q,p) = 1
(2π)N

δ (I(q,p)− In)

(C2) uniform on topologically transitive chaotic region:

Wn(q,p) = δ(En−H(q,p)) χω(q,p)∫
dNq dNp δ(En−H(q,p)) χω(q,p)

where χω(q,p) is the characteristic function on the chaotic component indexed by ω

(C3) ergodicity: microcanonical: Wn(q,p) = δ(En−H(q,p))∫
dNq dNp δ(En−H(q,p)

Important: Relative Liouville measure of the classical invariant component:

µ(ω) =
∫
dNq dNp δ(En−H(q,p)) χω(q,p)∫

dNq dNp δ(En−H(q,p))



How good is this theory at sufficiently small effective h̄?





4. Approach to describe the semiclassical transition regime

If we are not sufficiently deep in the semiclassical regime of sufficiently small effective
Planck constant h̄eff , which e.g. in billiards means not at sufficiently high energies,
we observe two new effects, which are the cause for the deviation from BR
statistics:

• Localization of eigenstates, due to the dynamical localization: The Wigner
functions are no longer uniformly spread over the classically available chaotic
component but are localized instead.

• Coupling due to tunneling between the semiclassical regular (R) and chaotic (C)
states

This effect typically disappears very quickly with increasing energy, due to the
exponential dependence on 1/h̄eff .



THE IMPORTANT SEMICLASSICAL CONDITION

The semiclassical condition for the random matrix theory to apply in the chaotic
eigenstates is that the Heisenberg time tH is larger than all classical transport times
tT of the system!

The Heisenberg time of any quantum system= tH = 2πh̄
∆E = 2πh̄ρ(E)

∆E = 1/ρ(E) is the mean energy level spacing, ρ(E) is the mean level density

The quantum evolution follows the classical evolution including the chaotic diffusion
up to the Heisenberg time, at longer times the destructive interference sets in and
causes:

the quantum or dynamical localization if tH � tT

Note: ρ(E) ∝ 1
(2πh̄)N

→∞ when h̄→ 0, and therefore eventually tH � tT .

This observation applies to time-dependent and to time-independent systems.

We shall illustrate the results in real billiard spectra.



We show the second moment 〈p2〉 averaged over an ensemble of 106 initial
conditions uniformly distributed in the chaotic component on the interval
s ∈ [0,L/2] and p = 0.. We see that the saturation value of 〈p2〉 is reached at about
NT = 105 collisions for λ = 0.15, NT = 103 collisions for λ = 0.20 and NT = 102 for
λ = 0.25. For λ = 0.15, according to the criterion at k = 2000 and k = 4000, we are
still in the regime where the dynamical localization is expected. On the other hand,
for λ = 0.20, 0.25 we expect extended states already at k < 2000.



Dynamically localized chaotic states are semiempirically well described by the
Brody level spacing distribution: (Izrailev 1988,1989, Prosen and Robnik1993/4)

PB(S) = C1S
β exp

(
−C2S

β+1
)
, FB(S) = 1−WB(S) = exp

(
−C2S

β+1
)
,

where β ∈ [0, 1] and the two parameters C1 and C2 are determined by the two
normalizations < 1 >=< S >= 1, and are given by

C1 = (β + 1)C2, C2 =
(

Γ
(
β+2
β+1

))β+1

with Γ(x) being the Gamma function. If we

have extended chaotic states β = 1 and RMT applies, whilst in the strongly localized
regime β = 0 and we have Poissonian statistics. The corresponding gap probability is

EB(S) =
1

Γ
(

1
β+1

)Q( 1

β + 1
,

(
Γ

(
β + 2

β + 1

)
S

)β+1
)

Q(α, x) is the incomplete Gamma function: Q(α, x) =
∫∞
x
tα−1e−tdt.



The BRB theory: BR-Brody
(Prosen and Robnik 1993/1994, Batistić and Robnik 2010)

We have divided phase space µ1 + µ2 = 1 and localization β:

E(S) = Er(µ1S)Ec(µ2S) = exp(−µ1S)EBrody(µ2S)

and the level spacing distribution P (S) is:

P (S) =
d2Er
dS2

Ec + 2
dEr
dS

dEc
dS

+ Er
d2Ec
dS2



We study the billiard defined by the quadratic complex conformal mapping:
w(z) = z + λz2 of the unit circle |z| = 1 (introduced in R. 1983/1984).

We choose λ = 0.15, for which ρ1 = 0.175

We plot the level spacing distribution P (S)



The level spacing distribution for the billiard λ = 0.15, compared with the analytical
formula for BRB (red full line) with parameter values ρ1 = 0.183, β = 0.465 and
σ = 0. The dashed red curve close to the full red line is BRB with classical
ρ1 = 0.175 is not visible, as it overlaps completely with the quantum case
ρ1 = 0.183. The dashed curve far away from the red full line is just the BR curve
with the classical ρ1 = 0.175. The Poisson and GOE curves (dotted) are shown for
comparison. The agreement of the numerical spectra with BRB is perfect. In the
histogram we have 650000 objects, and the statistical significance is extremely large.



Separating the regular and chaotic eigenstates in a mixed-type billiard system
recent work by Batistić and Robnik 2013

The idea:

Introduce the quantum phase space analogous to the classical billiard phase space in
Poincaré-Birkhoff coordinates, by using the Husimi functions in the same space.

Look at the overlap of the quantum eigenstates with the classical regular and
classically chaotic component(s), and thus separate the regular and chaotic
eigenstates and also the corresponding energy eigenvalues.

Then perform the spectral statistical analysis separately for the regular and chaotic
level sequences.

We find: Poisson for regular and Brody for chaotic eigenstates.



∆ψ + k2ψ = 0, ψ|∂B = 0. (3)

u(s) = n · ∇rψ (r(s)) , (4)

u(s) = −2

∮
dt u(t) n · ∇rG(r, r(t)). (5)

G(r, r′) = − i
4
H

(1)
0 (k|r− r′|), (6)

ψj(r) = −
∮
dt uj(t) G (r, r(t)) . (7)

c(q,p),k(s) =
∑
m∈Z

exp{i k p (s− q +mL)} exp

(
−k

2
(s− q +mL)2

)
. (8)

Hj(q, p) =

∣∣∣∣∫
∂B
c(q,p),kj(s) uj(s) ds

∣∣∣∣2 , M =
∑
i,j

Hi,j Ai,j. (9)



Phase space overlap index: M =
∑
i,jHi,j Ai,j

Hi,j is the Husimi function at point (i,j): normalized:
∑
i,jHi,j = 1.

Ai,j is discrete characteristic function: -1 for regular, +1 for chaotic point (i,j)

Therefore:

M = +1 if all nonzero Hi,j are in the chaotic region

M = −1 if all nonzero Hi,j are in the regular region

In the strict semiclassical limit (PUSC) we have either M = +1, or M = −1.

However, at lower energies, larger effective Planck constant, Hi,j can be partially in
regular and chaotic region due to various mechanisms: −1 < M < 1.

Consequently, M has a doubly peaked distribution at ±1, but such that the
fraction of intermediate values of M decays to zero as a power law with
decreasing Planck constant (increasing energy) in the semiclassical limit.



Examples of chaotic (left) and regular (right) states in the Poincaré-Husimi
representation. kj (M) from top down are: chaotic: kj (M) = 2000.0021815
(0.978), 2000.0181794 (0.981), 2000.0000068 (0.989), 2000.0258600 (0.965);
regular: kj (M) = 2000.0081402 (-0.987), 2000.0777155 ( -0.821), 2000.0786759 (
-0.528), 2000.0112417 ( -0.829). The gray background is the classically chaotic
invariant component. We show only one quarter of the surface of section
(s, p) ∈ [0,L/2]× [0, 1], because due to the reflection symmetry and time-reversal
symmetry the four quadrants are equivalent.



The level spacing distribution for the entire spectrum after unfolding for N = 587653
spacings, with kj ∈ [2000, 2500], in excellent agreement with the BRB distribution
with the classical ρ1 = 0.175 and β = 0.45.



Separation of levels using the classical criterion Mt = 0.431. (a; left) The level
spacing distribution for the chaotic subspectrum after unfolding, in perfect agreement
with the Brody distribution β = 0.444. (b; right) The level spacing distribution for
the regular part of the spectrum, after unfolding, in excellent agreement with Poisson.



The localization measures of chaotic eigenstates:
recent work by Batistić and Robnik 2013

A: localization measure based on the information entropy of the Husimi
quasi-probability distribution:

Calculate normalized Husimi distribution H(q, p) on the phase space (q, p) and then
the information entropy for each chaotic eigenstate

I = −
∫
dq dpH(q, p) ln

(
(2πh̄)NH(q, p)

)
and define: A = exp〈I〉

ΩC/(2πh̄)N
(= entropy localization measure)

where ΩC = phase space volume on which H(q, p) is defined, and the averaging is
over a large number of consecutive chaotic eigenstates.

• Uniform distribution H = 1/ΩC: A = 1 (extendedness)

• Strongest localization in a single Planck cell: H = 1/(2πh̄)N

I = ln
(
(2πh̄)NH

)
= 0 and A = (2πh̄)N/ΩC = 1/NCh(E) ≈ 0



C: localization measure based on the correlations of the Husimi quasi-probability
distribution:

Calculate normalized Husimi distribution Hm(q, p) for each chaotic eigenstate labeled
by m, and then the correlation matrix for large number of consecutive chaotic
eigenstates:

Cnm = 1
QnQm

∫
dq dpHn(q, p)Hm(q, p)

where Qn =
√∫

dq dpH2
n(q, p) is the normalizing factor

and define

C = 〈Cnm〉 (= correlation localization measure)

where the averaging is over a large number of consecutive chaotic eigenstates



Surprisingly and satisfactory: The two localization measures A and C are
linearly related and thus equivalent !

Linear relation between the two entirely different localization measures, namely the
entropy measure A and the correlation measure C, calculated for several different
billiards at k ≈ 2000 and k ≈ 4000.



As expected and in analogy to time-periodic systems like quantum kicked
rotator: The spectral Brody parameter β, describing the level repulsion in the level
spacing distribution P (S) ∝ Sβ at small S is functionally related to the localization
measure A:

Arrows connect points corresponding to the same λ at two different k.



α

s=0

ε

The geometry and notation of the stadium billiard of Bunimovich. ε is the family
parameter. The larger ε the stronger chaos.
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The distributions P (A) of the entropy localization measure A for k0 = 3440 and
various ε (from (a) to (l)): 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.1, 0.14, 0.16,
0.18, 0.2. Blue line: Beta distribution P (A) = CAa(A0 −A)b, with A0 = 0.7.
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The level repulsion exponent β as a function of the entropy localization measure 〈A〉
for variety of stadia of different shapes ε and energies E = k2, as defined in the text.
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The level repulsion exponent β as a function of

α = Heisenberg time/classical transport time

fitted by the rational function β = β∞
sα

1+sα, based on the classical transport time
from the exponential diffusion law. β∞ = 0.98 and s = 0.20.
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Lemon billiard with the shape parameter B.



Central: color-plot of the histogram of the joint probability density P (A,M) for
approximately 106 eigenstates with unfolded energy e ∈ [104, 106] of the B = 0.1953
lemon billiard. The color scale of the main figure is logarithmic. PH functions of the
highest energy eigenstates within small boxes at various positions are shown on the
margin. A classical phase portrait is plotted in the background of each state for
comparison.The color scale at the bottom encodes the relative amplitude of the PH
function.
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Decay of the relative number of mixed states |M | ≤ 0.8 with unfolded energy
e. (a) The relative number of states in the interval as a function of unfolded energy.
Both decay exponents are close to γ = −0.29. (b) Decay exponents for smaller
intervals [M,M + δM ] with δM = 0.1.



The Quantum Kicked Top is described by the Hamiltonian

H = αJx + γ
2jJ

2
z

∑∞
n=−∞ δ(t− n),

where the dynamical variables of the top are three components of the angular
momentum operators of the spin-j system, can also be expressed in terms of 2j

collective spin-1
2 Pauli operators, for example Jz =

∑2j
k=1 σ

(k)
z /2. The dimension of

the Hilbert space is N = 2j + 1, and the squared angular momentum is conserved,
J2 = j(j + 1) with j integer or half-integer. The first term describes a precessional
rotation about the x-axis with angular frequency α, the second term denotes a
torsional rotation around the z-axis with strength γ (with the period set to unity).

The dynamical evolution of the QKT is governed by the Floquet operator

F = exp(−i γ2jJ2
z ) exp(−iαJx),

and has a well defined classical correspondent in the semiclassical limit.



(a) A stroboscopic map of the classical dynamics generated from 20 random initial
conditions of 5× 104 iterations (top panels). (b) The corresponding logarithmic
values of SALI (bottom panels) on the parametrized phase space (θ, φ) discretized by
200× 400 grids of square cells, of same area, after 300 kicks. The initial conditions
colored dark blue correspond to chaotic orbits, the yellowish indicates ordered
motion, and the intermediate suggests sticky orbits. From left to right, the kicking
strength γ = 2, 4, 6 and α = 11π/19.



Decay of the fraction of mixed eigenstates χM with respect to j, at three kicking
strengths γ = 2.3 (squares), γ = 2.6 (circles) and γ = 3 (triangles). The mixed
eigenstates criteria here is M ∈ [−0.9, 0.5]. The dashed lines show the power law
decay of χM ∼ j−ζ.



Discussion and conclusions

• The Principle of Uniform Semiclassical Condensation of Wigner functions of
eigenstates leads to the idea that in the sufficiently deep semiclassical limit the
spectrum of a mixed type system can be described as a statistically independent
superposition of regular and chaotic level sequences.

• As a result of that the E(k, L) probabilities factorize and the level spacings and
other statistics can be calculated in a closed form.

• At lower energies we see quantum or dynamical localization.

• The level spacing distribution of localized chaotic eigenstates is excellently
described by the Brody distribution with β ∈ [0, 1].

• In the mixed type systems regular and chaotic eigenstates can be separated: the
regular obey Poisson, the localized chaotic states obey the Brody.

• The Brody level repulsion exponent β is a function of the mean localization
measure 〈A〉. Both, β and 〈A〉, are rational functions of α. The transition from
strongly localized to fully extended regime is a smooth one.



• The localization measure of chaotic eigenstates exhibits universally beta
distribution, if there are no stickiness effects, and else its distribution is
system-dependent.

• The distribution of the overlap index M is doubly peaked at the regular end
M = −1, and at the chaotic end M = +1, while the relative fraction of the
intermediate values of M , belonging to mixed states, decays as a power law, in
accordance with PUSC.

• Such a power law has been found also in the kicked top, Dicke model as an
important example of a many-body system and in the FPUT 3-particle system.
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