Scientific Machine Learning:
a basic Intro,
Open problems and Challenges

Constantinos Siettos
Department of Mathematics and Applications “Renato Caccioppoli”

i -!_.' i
© Az XA\ UNIVERSITA DEGLI STUDI DI NAPOLI

\i' J FEDERICO I SSMa

www.siettos.net Research Group
NUMADICS
Numerical Analysis, Machine Learning and
Data Mining for Complex and Multiscale Systems

Renato Caccioppoli

Naples, 20 Jan 1904 — Naples, 8 May 1959

'One of the most important and interesting Mathematicians of the 20 century
Grandson of Michail Bakunin
e In 1927 published an important work on integration
on K-dimension Varieties (related to Manifolds) in R™
Establishing the principles of a theory of measure of plane and curved
surfaces, and more generally of two or more dimensional varieties
embedded in a linear space.
« After 1930 Caccioppoli devoted himself to the
study of PDEs and ODEs and he provided existence

‘l—lh%ems for.both linear and non-linear problems
o Iri 1931, extended Brouwer's fixed point theorem, and applied his results to existence

problems of both PDEs and ODEs.

» In May 1938 Hitler was visiting Naples with Mussolini: Caccioppoli, an antifasisct,
convinced an orchestra to go our from a restaurant to play “La Marseillaise” in the street, and
made a speech against the Italian and German dictators.

« He was arrested, but managed -- with the help of his aunt Maria Bakunin who was a
Professor of Chemistry at the University of Naples - to be declared mad and he was
eventually sent to an asylum. In the asylum he worked on the problem of existence of closed
convex surfaces of a given Riemanian metric.

» His political opposition to fascism led him to organise a strike in Naples in 1943.

Film: Morte di un Matematico Napoletono

» Film: Morte di un Matematico Napoletono

Scientific Machine Learning

Scientific Machine Learning brings together the complementary perspectives
of computational science and computer science to craft a new generation
of machine learning methods for complex applications across science
and engineering. In these applications, dynamics are complex and
multiscale, data are sparse and expensive to acquire, decisions have high

consequence, and uncertainty quantification is essential.

rdentiying
correlations

quantitying
uncertanty

MACHINE

surrogate

e LEARNING

managing
1Hl-poged
problems

preventing supple-
overfitting manting frai.
ning data

predicting
system
dynamics identifying
e caugality
identifying iadiclubnis
system design understanding
d'y'i'larni-l:.s. i ' emergence of

function
; My,
explaiting "'&

=0T MULTISCALE
P NODELING &

sensitivity '«E
Ay
il

Adler et al, npj Digital Medicine volume 2, Article number: 115 (2019)

Scientific Machine Learning

“ Extract from Data Useful Information
and Meaningful Patterns

it only tock ye
65299 secon

Create Models to Interpret how the
Data Behave and Predict their Dynamics

For many Complex Systems,

The Physics (models or even variables) to describe
the Emergent dynamics are not always known/ are imprecise

Main Objectives for Complex Systems

iscover Variables from Data/ Agent-
ased Simulations

Congrafulatiens,
it only took you |
65299 seconds

AW JORONCD UK

Systematically Bridge Micro and Macro
Scales : THE INVERSE PROBLEM

« Construct Surrogate Models at
different Scales with Machine
Learning

 Numerical Analysis Numerical Analysis/ Control
- Forward-Problem: Solving DAEs-PDEs
- Bifurcation Analysis

The Flourishing of SciML

Big

Data, GPUs, Big! number of available microscopic/

agent-based models simulating the time evolution of Complex
Systems (Biological Systems, Material Science, Complex Fluids, Epidemics,

Neurons)

A full 90 percent of
all the data in the
world has been
generated over the
last two years.

Every day, 3.3
quintillion
bytes of data
(Million
terabytes)
created every
day

Micro-Scale _ Macro Emergent) Scale
26 ‘%g =
Large-Scale T o 5
N — N e
Microscopic | ﬁL_ﬁ:_I_'E-}n"!—> Mean-field
| 2N]

Different time and space scales

Agent-Based .
Macro scales much much bigger

B;;Z::ileagzl o than the bigger Microscopic ODE’s-PDE’s
Molecular scale
Dynarics The analysis is usually sought
*Material Science at this level (system-level analysis)
*Epidemiology
*Bio ... but such good models not always exist
*Neurons in closed form

e Markets

The emergent dynamics is more
than the sum of the properties of
the individual units

...decomposing-the system and

analyzing subunits does not
necessarily'give us an idea of

the beha\'lfgr as a whole
>,

...the behavior of complex systems
is therefore unpredictable

e

AD
]

vlicated or Chaos

...Subunits are designed and
connected so that they
accomplish a pre-determined
(predictable or even Chaotic)
behaviour

The notion of Complexity: a simplistic! model of

Fire Spread

A céll can take each time one of
e three states:

0.5

= “TDblack, Burned Cell |
= 2:Green, Cell with Fuel/Woog
= 3:Red: Fire ;

25

The evolution rules are

the fO"OWing: b5 i 15 2 25 3 35/

= Fire on a site will spread to nearest at time t
neighbors cells with Fuel at the next

= All cells with Fire will be burned at
the next time step. Cell with Fire

At time t

> at time t+1

At neighbor
cells

With probability
time step with probability p. at cell (i, j) p

Burned

»
»

At time t+1

The notion of Complexity: simple behavioral rules
generate complex behavior.

P=0.44 P=0.46

The Forward and Inverse Problem in Complex Systems
Modelling

2
A
IT's ALL ABOUT DISCOVERING AND SOLVING
DIFFERENTIAL EQUATIONS IN A CLOSED FORM
- Forward Problem: Numerical Solution of Large-Scale Macroscale (PDEs)
Differential Equations ap(r, D)
~ C‘. Cp Gg at = g(p, pr Prr)
Inverse Problem: Modelling and forecasting the emergent e Fe—er [oty = Zf)
dynamics of multiphysics and multiscale systems from DATA P o5 o 5 i=0
- Both remain open problems! ' :
: > Mesoscalie (Lattice-Boltzmann)
¢ o * filr oAt te) = fi(n, t) + 2,(r, t) + R(r &)
® !; P .
M; g eollision
. -
“1; b"”-*f;o,, A fdry
“ 9 v / d‘l,"[-

Time-scale
*

Microscale (particles) 7REE =F

Caomparison of Brains and Traditional Computers

1943, McCulloch-Pitts
neuron,
* 1949, Donald Hebb, The

Organization of Behavior

200 billion neurons, 32 trillion synapses « 64 billion bytes RAM but

trillionsbyt
Element size: 106 m riflionsbytes

_ * Element size: 10°m 1957, The Perceptron, Frank
Energy use: 25W : & ~100W (CPU Rosenblatt
Processing speed: 100 Hz nergy watt- =~ (CPU) « 1959, Bernard Widrow and
+ Processing speed: ~30°Hz Marcian Hoff "ADALINE"

Parallel, Distributed |
- Serial, Centralized and "MADALINE.

Fault Tolerant « 1970, Seppo Linnainmaa,
» Generally not Fault Tolerant Back Propagation, then
Learns: Yes
* Learns: Some Rumelhart et .al' .
Intelligent/Conscious: « 1970-1985 Winter time
_ « Intelligent/Conscious: No « 90s’ ANNs Universal
SomeTimes

Approximation Theorems
« 2010- Deep Learning Era
« 2020- Generative Al

iNeurons in the Brain

Although heterogeneous, at a low level the brain is
composed of neurons

A neuron receives input from other neurons (generally
thousands) from its synapses

Inputs are approximately summed

When the input exceeds a threshold the neuron sends an
electrical spike that travels from the body, down the axon, to
the next neuron(s)

Axon from another cell

A neuron 1s connected to other
neurons through about /0,000
synapses

Dendrite

Nucleus

Cell Body or Soma

A Recipe for

- Background))
& Machine Learning

1. Given training data:

{wia yz}f;l

4. Train

(take small steps
opposite the gradient)

60+ = 0 — 0, Ve(fo(x:), y;)

1943, McCulloch-Pitts neuron

{AI tlﬁClal N@Ul ON : an imitation of a human neuron

Biological Neuron

Artificial neurons are based on
Axon biological neurons.

P———— Each neuron in the network receives
one or more inputs.

An activation function is applied to
the inputs, which determines the
output of the neuron - the activatior
level.

Artificial Neuron

Interconnects Weights

Processing
Elernent

Xa
Output

Activation
Funclion

+1 +1 /—-
X ‘// X X

-1

(a) Step funtion (b) Sigmoid funtion (c) Linear funtion

Perceptrons 1957, Frank Rosenblatt

A perceptron is a single neuron that classifies a set of inputs into one of
two categories (usually 1 or -1).

The perceptron usually uses a step function, which returns 1 if the
weighted sum of inputs exceeds a threshold, and 0 otherwise.

i O

n

1 if Ew-x-bﬂ
i =0 "t
-1 otherwise

Learning Rule in ADALINE
is the LMS ("least mean squares”)

|_| Near Perce ptron 1959, Bernard Widrow and Marcian

Hoff Adaptive Linear Neuron
They are multivariate linear models:

Out(x) = w'x

And “training” consists of minimizing the sum-of-squared residuals by gradient
descent.

£ =3 (Outx,)-)
= Zk: (WTXk - Vi)2

Gradient Descent in "n” Dimensions

iGiven flw):R" >R ¢

oy)

Vf(w): 1 ; points in direction of steepest ascent.
if(w)
\ﬁwn) Maximum rate of change

GRADIENT DESCENT RULE: W <« w-7Vf(w)

Equivalently 5
Wy Wi Aw . f(w)where w; is the jth variable
J

Linear Perceptron Training Rule

E = i(yk -w'x,)> R:lInput-Output patterns k=1, ..., R.
k=1

Gradient descent tells us how we should update w to minimize £:

ok
W, =W, ’75]'

oF
So whats — ¢

ow

J

Linear Perceptron Training Rule

R
E=) (y,-w'x,)’
k=1

Gradient descent tells us
we should update w to
minimize £.

j ;o ow.

oE 0

So what's —~— ¢
ow

J

OF & 0
P Z—(J’k _WTXk)2

R
0
:ZZ(Yk_WTXk) (yk_WTXk)
k=l ow;

J

& 0
= —22 0, wx,
k=1]
..where
0y = Vi
R o &
= —22 0, ——) WX,
k=1 joi=l

Linear Perceptron Training Rule

i E:Z(yk—WTXk)z

Gradient descent tells us how we
should update w to minimize E£:

ow .

J

W. <— W ok
j ;o ow.

...where...

OF R

—22 04Xy,

k=1

\

R
W, =W, + 2772 5kxkj
k=1

B T
0, =V, —W X,

The linear perceptron algorithm

1) Randomly initialize weights w; w, ... w

2) Getyour training dataset
3) fori=1toR
6, =y, ~W'X,
4) for j=1tom R
W, W, +7725l.xij
i=l

5) if Y& stop. Elsegoto 3.

Gradient descent with sigmoid on a perceptron

inotice g'(x)=g(x)1-g(x))
1

so g'(x)=

Because: g(x) =
l+e

-1+ * -1

B 2 2 -x
(1+e_x) (1+e_x) I+e I+e

1 (1
— X

glx)1-

g(x))

l+e

Out(x) = g(z wkxk]

s-3{3un)

j_vi = 22()/,- - g(; kath
ST
_ Z ~265,g(net, 1 - g(net,))x,

where 6, =y, —Out(x,) mg:Zka
k

0
ijg

(3w

0
g{;;v%x%)gng;w%%k

The sigmoid perceptron
update rule:

W, < W, +7725g(1 g

(

Ms

g =

gl 2N

where

I
—_

J

0, =

— 8

§

Multilayer Networks: Deep Learning

Single-layer artificial neural networks, have limitations in terms of
the types of functions they can approximate.

Out(x)= g(WTx): g(Z WX j)

Use a wider representation !

Out(x):g[Zng (Zklekxjkﬂ This is a nonlinear function
’ Of a linear combination

Of non linear functions
Of linear combinations of inputs

1970, Seppo Linnainmaa, Back
Propagation, then Rumelhart et al.

Training the ANN: Backpropagation algorithm

Out(x) = g[Z W,-g[Z w]kxkﬂ
j k
Find a set of weights {W },{w, }

to minimize

> (v, —Out(x,))

1

by automatic differentiation (chain rule)

That's it!

That’s the backpropagation
algorithm.

Backpropagation Algorithm (with 6p)

Create€ a feed-forward network with n,, inputs, n,;.,., hidden units, and n_, output units.

Initialize all network weights to small random numbers

Until termination condition is met, Do

For each <x,t> in training examples, Do
Propagate the input forward through the network:

1. Present Input x to the network and compute the output O, of every wu in the network
Propagate the errors backward through the network:
2. For each network output k=1,2,..., n,,, calculate its error term 6,

O <=0, (1=0,)(t, —0;)
3. Foreach hidden unit h=1,2,... n,;,4.n, Calculate its error term 6,

0, <= 0,(1-0,) Zwkh5k

keoutputs

4. Update each network weight Wj,-

W, =W, + Awﬂ.

Backpropagation Learning

For each <x,t> in training examples

= -lz('* —q,)? Gradient Descent Rule:

k€O

AU";’.‘ = —

We use the following notation:
e z;; - the ith input to unit j
e wj; - the weight associated with ith input to unit j
e z; - the weighted sum of input for unit j, i.e. zj =). wjizji

e a; - the output computed by unit j, i.e. a; = g(z;) where g is an activation function (sigmoid here)

Backpropagation Learn

We use the following notation: B l Y
L= 5 Z (tx —ax)
e z;; — the ith input to unit j k€O

e w;; - the weight associated with ith input to unit j

e z; - the weighted sum of input for unit j, i.e. z; =) wjizji

e a; - the output computed by unit j, i.e. a; = g(2;) where g is an activation function (sigmoid here)

Notice first that weight Wji can influence the network’s output only through Zj .

oL
AH.?J‘, = _QW‘}-'
1 OL _ 9L da ?_inlz(,k_ak)z
03_,‘ 0(13' 6:_,' L dﬂj UGiQkE()

oL 0L 0z; oL g1 .
Owj; 0z Ow;; 6“3'01(W OﬂiQ(J e — 6_:,-:_("1‘_‘11')03'(1‘“}):01

oL 1 0 '

= 5% = 52t - a;) —(t; — ;)
dz; 7' W = i) g V9~

. Backpropagation

We use the following notation:
e z;; — the ith input to unit j

e w;; - the weight associated with ith input to unit j

e z; - the weighted sum of input for unit j, i.e. z; =). wjiz;i

e a; — the output computed by unit j, i.e. a; = g(z;) where g is an activation function (sigmoid here)

Notice first that weight Wji can influence the network’s output only through zj . Case 1: j is an output unit

Example : ak
oL 8 1 ;
e —=a dL
Aw;; = —aaaL da; 0Oa;2 k'_o(tk o) — 5= —(t; — aj)aj(1 — a;) = 4;
Wi OL 9L da; 91 =
0z; 0Oaj 0z; / = a;(f-j ~a;)’ oL oL
i y B y 4
8L _ BL 03) = ﬁﬂj(l . {]J) 1.) 8 B.wkh — ayk 8.“.:h
Owj; 0z Ow;; da; = 2t - ﬂj)a—%(fj - a;) 8}, '
b = —q
. E}él’ji = —(t; —a;) Do "
} il = —(tx — ak)ax(l — ak)an

: = —aﬁkah . d
Wik = OkQp

Finally: Awg, = —ap

]hackpropagation Learning

Bl We use the following notation:
e r;; — the ith input to unit j
e w;; — the weight associated with ith input to unit j

the weighted sum of input for unit j, i.e. z; =) wjxj;

L

.4.'{

e a; - the output computed by unit j, i.e. a; = g(z;) where g is an activation function (sigmoid here)
Notice first that weight WJ1 can influence the network’s output only through Zj . Case 2: _| is a hidden unit

When unit j is an internal unit we must also consider every unitimmediately downstream of unit |, i.e. all units
whose direct input include the output of unit j (variations in hidden unit activations affect outputs)

This is because a change in Wji(and therefore in Zj} influences the network outputs ™

only through these units. | et d'S(f) denote units downstream of unitj. w. .
f_j—L — Z ﬂﬁi :—L = —(t; —aj)a; (1 —a;) =d; %
Oz; Ry 2 Oz Oz e - _
B2k a; use 4; to denote 5= Zist[X
. Z Ok Ba: Oz) RN +2
keda(j) 3 T BTN\
‘ 0. =a;(l —a;) E Ok Wi T2l N\
- Z O F!’kjff_;{ 1 — aj) ! > ': o ; Sl =t T _~
keds(j) \Bh+3)

kcds{ 71 ‘__-__/

~Backpropagation Learning

We use the following notation:
e x;; — the ith input to unit ;
e w;; — the weight associated with ith input to unit j
e z; - the weighted sum of input for unit j, i.e. z; =Y, wjirj

e a; — the output compured by unir j, i.e. a; = g(z;) where g is an activation function (sigmoid here)

When unit j is an internal unit we must also consider every unitimmediately downstream of unitj, i.e. all units
whose direct input include the output of unitj.

This is because a change in Wji (and therefore in Zj) influences the network cutputs only through these units.

o @) _ Example: a_h
= AT — oL 0L Oz
ar T- L (7 b I, 3 '\ -‘R | f_"l,_-.-’(-- = [= (JI J h
Oz; = Oy s AN .-:'"'“"-—x..-"l. N N = . - thuy,, 0z, Oy,
Ve~ K/ TR, A AL 9z use 4. to denote 2L
. ‘;'\!.(T'l;h. d..J-,r_.. . N _.-*'.’.I‘-T; ’.’.f__ /"_. 'J,'f_’w.' — g ol : = T 1Se ¢ b O denorte D=
HI—' f.t‘rf_';f-’\‘,; "'.2__‘“ A /\ _ ’/h‘_ — l‘.’_' k f—.' 7 ’
kedal)) B Wae " 2V _h__\ 8 S kEds(h) -
‘_- h 1 ‘\"\'-.: ¥ 8iia 4 w? = { s §, 04
=) KU iL — ;) 7 W o S E— L1, i
Kearti) NN/ A = ap(l —ap)) Ok Wkh T
e N keda(h) A oL '
- ~ AWy = —L = —QOKT4

1
= OnT; (i T ¥

Improving Gradient Descent

Gauss-Newton’s method

2
E(W+h)=E(W)+hT6—E+%hT6€

h+O(/h[)
OW

If we neglect the O(/°) terms, this is a quadratic form

) -1
0 E} OF

W W— | —
OW OW

This should send us directly to the global minimum if the
function is truly quadratic.

Stochastic GD

a OpenAccess

September, 1951

A Stochastic Approximation Method

Herbert Robbins, Sutton Monro

Ann. Math. Statist. 22(3): 400-407 (September, 1951). DOI: 10.1214/aoms/1177729586
Choose an initial vector of parameters w and learning rate
Repeat until an approximate minimum is obtained:
Randomly shuffle samples in the training set
Apply GD

End Until

Published as a conference paper at ICLR 2015

ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION

Diederik P. Kingma® Jimmy Lei Ba™
University of Amsterdam, OpenAl University of Toronto
dpkingma@openai.com jimmy@psi.utoronto.ca

stochastic optimization requiring first-order gradients computing individual adaptive
learning rates from estimates of first and second moments of the gradients; the
name Adam is derived from adantive moment estimation.

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g7 indicates the elementwise
square g; = g;. Good default settings for the tested machine learning problems are o« = (.001,
1 = 0.9, 83 = 0.999 and ¢ = 10~". All operations on vectors are element-wise. With 3% and 3}
we denote [3; and 3 to the power £.

Require: «: Stepsize
Require: [3;, 3> € [0,1): Exponential decay rates for the moment estimates
Require: f(#): Stochastic objective function with parameters #
Require: 6f;: Initial parameter vector
mg + 0 (Initialize 1 moment vector)
vo 4+ 0 (Initialize 2™ moment vector)
{ + 0 (Initialize timestep)
while @; not converged do
te—1t+1
g; + Vo fi(0;_1) (Get gradients w.r.t. stochastic objective at timestep t)
myg +— 31 -my_y + (1 — F1) - g+ (Update biased first moment estimate)
v 4 Bt + (1= F3) - yf (Update biased second raw moment estimate)
my - my /(1 — 3}) (Compute bias-corrected first moment estimate)
U; + vy /(1 — B5) (Compute bias-corrected second raw moment estimate)
0y — ;1 — - m/(V/7; + €) (Update parameters)
end while
return #; (Resulting parameters)

Learning Algorithm:
acKpropagation

Pictures below illustrate how signal is propagating through the network,
Symbols w,,,.,, represent weights of connections between network

input x,, and neuron n in input layer. Symbols y, represents output signal of
neuron n.

= ﬁ(“‘m)rﬂ + Wiy ¥s)

Backpropagation

Propagation of signals through the hidden layer. Symbols w, represent
weights of connections between output of neuron m and input of neuronnin
the next layer.

i Backpropagation

Propagation of signals through the output layer.

Backpropagation

In the next step the output signal of the network y is compared with
the desired output value (the target), in training data set. The
difference is called error signal 6 of output layer neuron

Backpropagation

The idea is to propagate the error signal 6 (computed in the single
teaching step) back to all neurons, which output signals were input to
the reference neuron.

Backpropagation

The idea is to propagate error signal d (computed in single teaching
step) back to all neurons, which output signals were input to the
reference neuron.

Backpropagation

The weights' coefficients w,_ used to propagate errors back are equal
to this used during computing output value. Only the direction of data
flow is changed (signals are propagated from output to inputs one after
the other). This technique is used for all network layers. If propagated

errors came from few neurons they are added. The illustration is
below:

Backpropagation

When the error signal for each neuron is computed, the weights
coefficients of each neuron input node may be modified. In formulas
below df(e)/de represents derivative of neuron activation function
(which weights are modified).

df,(e) .
de

df,(e)
; L g 1M

n«"(ml = Wy 770,

Xq

‘L Backpropagation

When the error signal for each neuron is computed, the weights
coefficients of each neuron input node may be modified. In formulas
below df(e)/de represents derivative of neuron activation function
(which weights are modified).

W e, i g -

dr;(e)
de

 dfy(e)

Wora2 = Weaya T 170,

X,

Generalization

Generalization can be defined as a mathematical Robust interpolation or regression over
a set of training points:

Overfitting and Underfitting

Generalization

Overfitting Y = high-order polynomial in X

Y

Interpolation
two points sh
only one poly
these points.

Generalization

How Overfitting affects Prediction

A
v

Underfitting Overfitting

»
»

Predictive
Error

Error on Test Data

Error on Training Data

»
»

Model Complexity
«—>
|deal Range
for Model Complexity

Training and Validation Data

t .
Full Data Se Idea: train each
/ Training Data model on the
“———“training data”
and then test
> - each model’s
Validation Data accuracy on
\ ¥Y— the validation data
- Test Data

+— And then test the best model on the
Test data. This is the final accuracy

The k-fold Cross-Validation Method

Why just choose one particular 90/10 “split” of the data?
— In principle we could do this multiple times

*k-fold Cross-Validation” (e.g., k=10)
- We partition randomly our full dataset into k_disjoint subsets (each roughly of size n/k, n =
total number of training data points)
ofor i = 1:10 (here k = 10)
—-train on 90% of data in each subset (We use all combinations if the dataset is
limited.)
—-Acc(i) = accuracy on other 10%
eend

eCross-Validation-Accuracy = 1/k Zi Acc(i)
- choose the method with the highest cross-validation accuracy
- common values for k are 5 and 10
- Can also do “leave-one-out” where k = n

Split a dataset into a training set and a testing set, using all but one observation as part of the
training set. Repeat this process n times (where n is the total number of observations in the
dataset), leaving out a different observation from the training set each time.

Generalization: ANN

N = # hidden nodes m = # training cases
W = # weights error tolerance €
Network will generalize with 95% confidence if:

1. Error on training set <

W N W
2 > O(—log, —)~ m>—
& & &

Universal Approximation Theorems for ANNs (late 80s-early '90s)

¢ Single Layer NNs

e Cybenco, 1988, Approximation by superpositions of a sigmoidal function (Ll)

N(x; a, B, w) = Z wijo(a;x + 53;).
=1

Theorem

For any function f € L([a, b]) and for all ¢ > O there exist a choice of &, B, w such that

”N = f”,_l < €.

where || - ||, 1 is the usual LY norm, i.e. &)l = fab [(x)|dx.

Universal Approximation Theorems for ANNs (late 80s-early '90s)

Multilayer Layer NNs: Deep Learning

can approximate any Borel measurable function arbitrarily

closely.
Neural Networks, Vol. 2, pp. 359-366, 1989 0893-6080/89 $3.00 + .00
Printed in the USA. All rights reserved. Copyright © 1989 Pergamon Press plc

ORIGINAL CONTRIBUTION

Multilayer Feedforward Networks are
Universal Approximators

Kur' HORNIK

Technische Universitit Wien

MAXWELL STINCHCOMBE AND HALBER WHIlE
University of California, San Diego

(Received 16 Septernber 1988: revised and accepted 9 March 1989)

Borel Functions: Defined in terms of measurability with respect to the Borel sigma-algebra.

L? Functions: Defined in terms of intearability with respect to a measure.

Universal Approximation Theorems for ANNs ('90s)

Non-linear Operators

Chen, T. & Chen, H. Universal approximation to nonlinear operators by

neural networks with arbitrary activation functions and its application to
dynamical systems. IEEE Trans. Neural Networks 6, 911-917 (1995).

Theorem 1 (Universal Approximation Theorem for Operator).
Suppose that o is a continuous non-polynomial function, X is a Banach
space, K, c X, K> — R? are two compact sets in X and R?, respectively,
V is a compact set in C(K,), G is a nonlinear continuous operator,
which maps V into C(K,). Then for any € > 0, there are positive integers
n, p and m, constants c~, fﬁj—, o, & € R, wy € R, xeK,i=1,...,n,
k=1,...,pandj=1,...,m, such that

b M "
G(u)(y) — E E cfo E 5?}“(1_;) + &% o(wy -y + c;'kl < €
k=1 i=1 i—1 B
5 ? - trunk

g

branch

(1)

holds for allue Vand y€ K,. Here, C(K) is the Banach space of all con-
tinuous functions defined on K with norm || fl| oy = maxxex|f(x)].

Deep Learning 2020s

Input function u

Training data

at fixed sensors 1,...,Ty
K-\. xm
éTo » .
| ‘\ ’
'I
G
_ - —
--* T
p— m
.?313:2

Output function G'(u)
at random location ¥

-

\

\

The DEEP-O-NET

Lu, L., Jin, P, Pang, G. et
al. Learning nonlinear operators via
DeepONet based on the universal

approximation theorem of
operators. Nat Mach Intell 3, 218—

K

\

229 (2021).
u(zy)
U —> u(:r:z) » Branch net
U(xm)
Y —>| Trunk net

¢: 08||d: &®

G(u)(y)

Open challenging Tasks

e (A) Can ML beat traditional numerical analysis methods for the solution of stiff ODEs and

L (CR

FORWARD PROBLEM
PDEs?,

e (B) Deal with the so-called "curse of dimensionality” when trying to efficiently learn ML

models with good generalization properties, and

e (C) Discover from data the appropriate macroscopic quantities/physics for the emergent

INVERSE PROBLEM

Tl i Sl i v g s B kg
[T "

dynamics, Sl oot

e (D) Bridge Machine Learning with Physics-based Modelling, Discover Physical Laws from
Data

