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Open challenging Tasks

e (A) Can ML beat traditional numerical analysis methods for the solution of stiff ODEs and

FORWARD PROBLEM

PDEs?,

e (B) Deal with the so-called “curse of dimensionality” when trying to efficiently learn ML

models with good generalization properties, and

e (C) Discover from data the appropriate macroscopic quantities/physics for the emergent

INVERSE PROBLEM

dynamics, N i A

e (D) Bridge Machine Learning with Physics-based Modelling, Discover Physical Laws from
Data




Numerical Solution of Differential Problems, VPs

Picard's Theorem: existence of a solution to a given initial value

Consider the IVP with m first-order ordinary differential

equations:

& — F(y.20.¥(00) = Yo (2)

f: R xR™— R™ being continuous multivariate functions in

some closed domain D of the (x. y) space containing the point

(%0, ¥0)-
Then if f satisfies the Lipschitz inequality:

1 (x,y) = F(x, 2)||c0 < K]ly = 2||o0, K >0 (3)

in D, then there exists a unique continuously differentiable
function y(x) which satisfies (2).



Numerical Solution of ODEs

Picard’'s Theorem

(P. J. Collins, Differential and Integral Equations, Part |, Mathematical
Institute Oxford, 1988)
For m first-order differential equations:

dy B B
ok f(y.x).y(xo) = Yo (4)

The sequence of functions {y("}5° defined recursively as

.V(O) = Yo

yI(x) =yo + f;: f(s,y("V(s))ds,n=1,2,...(5)
converges uniformly in the interval D to the solution:

v = yo+ | " s, () s (6)

X0

The uniaqueness of the solution follows from the Lipschitz condition.




Numerical Solution of ODEs

Classical Numerical Methods

e One Step Methods

o Explicit Euler (rectangle rule for integration)

V%) = ¥( %) 4+ Oef (% 1,906 1)) 8 =1,2,.. ..,

_ Xu—xXo
dx = N

o Implicit Euler:

yls) = ¥z, 1)+ dxflx, yle)),4=1,2 .. .,

_ XuM—Xo
dx = M,

o Runge-Kutta methods
y(xn) = y(Xn—1) + %dx(kl + ko + k3 + ka),

ki = f(xp—1,y(xn-1)).
kzzf(xn_l+%dx,y(xn_1)+%k1). kz — f(x,,_l+%dx.y(xn_1)+%k2).
ky=Ff (xp—1 + dx,y(xp—1) + k3)



Numerical Solution of ODEs: The Forward Problem

Numerical Methods

e Multistep Methods

o Adams- Bashforth
o Adams—Moulton (implicit)

The idea is to approximate the integral below:

yo) = y0i1) + [ " F(x,y)dx 7)

by first approximating f(x) using polynomial interpolation and
then integrate the interpolating polynomial. So for example the

Adams-Bashforth integration reads:

¥ (%) = Y1)+ = IX[3F (o1, ¥ (X1)— F (X2, ¥ (n2)] (8)



Numerical Solution of ODEs
Stiff Problems

e T he unknown solution may exhibit a complex behaviour,
including steep gradients, and stiffness which pose

difficulties in the numerical solution.

—-r - 4 . = = - - o, == A T ,'=,.._ a = i 1 " A = _.‘.";ET 5 - e
Shampine, and Gear, A user's view of solving stiff ordinary
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differential equations, SIAM review, 21, 1-17, 1979.

Stiff problems, are the ones which integration “with a code
that aims at nonstiff problems proves conspicuously
inefficient for no obvious reason (such as a severe lack of

smoothness in the equation or the presence of singularities)”



Numerical Solution of ODEs
Stiff Problems and Steep Gradients: NOT TO BE CONFUSED

Shampine, and Gear, A user's view of solving stiff ordinary
differential equations, SIAM review, 21, 1-17, 1979.

Stiffness should NOT be confused with the presence of steep
gradients.

For example, at the regions where the relaxation oscillations of
the van der Pol equation exhibit very sharp changes resembling a
discontinuity, the equations are not stiff. Finally, note that the
spatial discretization of PDEs may lead to stiff systems of ODEs
depending on the spatial mesh density.




Numerical Solution of ODEs
Stiff Problems

Predictor-corrector multi-step method (Gear's method-use of

Newton's method)
Gear, C. W. (1981), "Numerical solution of ordinary differential

equations: Is there anything left to do?", SIAM Review, 23 (1):
1024, doi:10.1137/1023002




Numerical Solution of PDEs

Finite Differences and Finite Elements

Lu=f(u, ) in Q. (11)

with boundary conditions:
Biu= gy, in 98, |=1,2,..., m. (12)

A numerical solution i = @i(\) to the above problem at
particular values of the parameters A is typically found iteratively
by applying e.g. Newton-Raphson or matrix-free Krylov-subspace
methods (Newton-GMRES) on a finite system of M nonlinear
algebraic equations resulting from FD, FEM, Spectral methods




Numerical Solution of PDEs

Finite Elements

e \We seek for a solution of in V points x; of the domain 2

according to:
N
u=y woj (13)
j=1

where the basis functions ¢; are defined so that they satisfy

the completeness requirement.

e [ he scheme can be written as the minimization of the
weighted residuals K. k = 1.2.... N defined as:

Rk_f(l_u—f(u/\ C)de—f—Z/ (Bxu — gj)o) do
(14)




Numerical Solution of the Forward and Inverse Problem for
Differential Equations

with Machine learning

e Karniadakis G, Kevrekidis |, Lu, Perdikaris P, Wang S, Yang L,

(2021) Physics-informed machine learning, Nature Reviews

From the early 90s:

e Rico-Martinez, K Krischer, |G Kevrekidis et al., (1992)
Discrete-vs. continuous-time nonlinear signal processing of Cu
electrodissolution data-Runge-Kutta Integrator as ANN

e Lagaris et al. Fotiadis (1998): feedforward neural networks
(FNN) for simple differential equations.

e Gonzalez-Garcia et al. Kevrekidis (1998): multilayer neural

network scheme that resembles the Runge-Kutta integrator for
PDEs (Kuramoto Sivashinskv)



Numerical Solution of the Forward and Inverse Problem for
Differential Equations

Machine learning/ Physics Informed Neural Networks

e Deep Learning
- Han et al. Weinan E. (2018) PNAS Deep Neural Networks-
high-dimensional nonlinear parabolic PDEs Black—Scholes, the
Hamilton—Jacobi—Bellman and the Allen—Cahn equation.

e Gaussian Processes

-Raissi, Perdikaris, Karniadakis SIAM J SC (2018)
-Chen, Hosseini,Owhadi, Stuart, Andrew (2021) J Comp Phys

e Physics-informed neural networks/ automatic differentiation
- Raissi, Perdikaris, Karniadakis J of Comp Phys (2019) Physics-informed
neural networks: A deep learning framework for solving forward and inverse
problems involving nonlinear partial differential equations
- Meng, Li, Zhang,Karniadakis Meth in Appl. Mech. Eng.(2020) PPINN:
Parareal physics-informed neural network for time-dependent PDEs, Comp
- Lu, Meng,Mao, Karniadakis (2021) DeepXDE: A Deep Learning Library for
Solving Differential Equations. SIAM Rev.



Numerical Solution of the Forward and Inverse Problem for
Differential Equations

with Machine Learning: The “classical Machine Learning way"

Physics Informed Neural Networks

Let's assume a set of m points x; € Q C RY of the independent
(spatial) variables, defining the grid in the domain €2, ng points along
the boundary of the domain, 92 and n; points in the time interval.
Then the “classical way" to solve (time-dependent) differential
equations in the general form

du
— = L(x,u,Vu,V?u,...), (15)
ot
where v satisfies the boundary conditions Bu = g. in dQ (B is the
boundary differential operator) involves the solution of a minimization
problem of the form:



Physics Informed Neural Networks

Numerical Solution of Ditferential Equations

with Neural Networks: The “classical Machine Learning way"

2

) — L(x;. V(). V(). V2U(.),...)|| +

rplnEPQ ZZ

=1 =1

(16)
>_IBY() gl

where W(.) := V(t;.x;. N(t;. x;, P. Q)) represents a “trial"
function approximating the solution v at x; and N(t;.x;. P, Q)
is a machine learning algorithm; P contains the parameters of
the machine learning scheme (e.g. for a FNN the internal
weights W, the biases B, the weights between the last hidden
and the output layer W*°), Q contains the hyperparameters.



Physics Informed Neural Networks

Machine Learning

Training is computationally demanding even for the simplest structures!

lteratively: e.g. with quasi-Newton BFGS, Back-Propagation,

Adams etc.

1. Given training data:
N
{ziy. hia

2. Choose loss function

3. Define goal



Curse of Dimensionality
In Life: The Curse of Dimensionality Saul Steinberg 1968




Curse of Dimensionality
In Machine Learning

Bellman Adaptive Control Processes. Princeton University Press, 1961.): the number of samples
needed to estimate an arbitrary function with a given level of accuracy grows exponentially with
respect to the number of input variables




Random Projection Neural Networks

Solving the Gordian Knot of the curse of dimensionality in optimizaton

e Schmidt et al. (1992): fixing the weights between the input and
the hidden layer at random values, and by solving a linear
problem for the output weights the approximation accuracy is
equivalent to that obtained with back-propagation.

e Random Vector Functional-Link Networks (RVFLNs) were
addressed in Pao et al. (1992) in which the input layer is directly
connected also to the output layer, the internal weights are
chosen randomly in [—1,1]: the output weights are estimated in
one step by solving a system of linear equations.

e Igelnik et al. (1995) proved that RVFLNs are universal
approximators for continuous functions on bounded
finite-dimensional sets.



Random Projection Neural Networks

Different versions of them

e Randomized and Random Vector Functional Link Networks

(RVFLNSs): Schmidt et al. (1992)

e Echo-State Neural Networks and Reservoir Computing: Jaeger
(2002)

e Extreme Learning Machines: Huang (2006)

The keystone idea behind all these approaches is to use a fixed-weight
configuration between the input and the hidden layer, fixed biases for the nodes of
the hidden layer, and a linear output layer. Hence, the output is projected linearly
onto the functional subspace spanned by the nonlinear basis functions of the
hidden layer, and the only unknowns that have to be determined are the weights
between the hidden and the output layer.

Huang (2014) An insight into extreme learning machines: random neurons, random
features and kernels, Cognitive Computation, 6, 376-390.



Random Projection Neural Networks
Johnson and Lindenstrauss Lemma SHALLOW NEURAL NEWTORKS

The feasibility of this approach can been justified by the

celebrated Johnson and Lindenstrauss (JL) Theorem:

Theorem (Johnson and Lindenstrauss)

Let X be a set of n points in RY. Then, Ve € (0.1) and k € N
such that k > O(":—z”) there exists a map F : RY — R* such that

(1=€)|lu—v3 < [|F(u)=F(v)|3 < (1+e)|u—v]; Yu,velX.
(17)
Note that while the above theorem is deterministic, its proof

relies on probabilistic techniques combined with Kirszbraun's

theorem to yield a so-called extension mapping.




In particular, it can be shown that one of the many such embedding
maps is simply a linear projection matrix with suitable random entries.
Then, the JL Theorem may be proved using the following lemma.

Lemma
Let F(u) be the random projection defined by

F(u) = L.Ru, ucRY

vk

where R = [r;] € R**Y has components which are i.i.d. random
variables sampled from a normal distribution. Then, Y u € X

(1= )lull® < [[F(u)l* < (1+€)llul]

is true with probability p > 1 — 2exp (—(e — €*)%).




. Rahimi, B. Recht, Weighted sums of random kitchen sinks: replacing minimization with randomization in
learning., in: Nips, 2008,263 pp. 1313-1320.

Theorem 3.4. (cf. Theorem 3.1 and 3.2 in [41])) Consider the parametric
set activation functions on X C R% ¢(z;a) : X x A = R parametrized
by random variables a in A, that satisfy sup, , [¢(x, )| < 1. Let p be a
probability distribution on A and p be a probability measure on X and the
corresponding norm || f||zz¢) = fx f(x)?1(dzx). Define the set:

acA
Function in RKHS (:)_l)

sz{gm— / w(e)o(@; a)da: [|g]lp <oo}. lglly = sup flu(er) /p(e)]]

Fix a function ¢g* in G,. Then, for any 6 > 0, there exist N € N, and
. Qo . ... ay of a drawn i.i.d. from p, and a function ¢ in the random set

of finite sums
N
{ E w;o(x: o } (25)

Il

Ga

such that




The Forward Problem: think on Latent Spaces and High Dimensions

Parsimonious physics-informed random
projection neural networks for initial value
problems of ODEs and index-1 DAEs @
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Theorem
For an IVP problem in the canonical form or in the semi-explicit

form for which the Picard-Lindel6f Theorem holds true, the
PIRPNN solution Wp; with NN Gaussian basis functions whose
shape parameters «vj; are drawn i.i.d. from a uniform distribution
across the sample space, converges uniformly to the actual
solution profile u(t) in a closed time interval [ty t.,q] with an
upper bound of the order of O(—) with a probability 1 — § for

VN
any 0 > 0.
I



THE FORWARD PROBLEM

The Adaptive Scheme: Error Control

Let us assume we have solved the problem up to the interval [tx_1. tk],
hence we have found uEk_l) and we are seeking ugk} in the current interval
[tk, tie1] with width Ax; = tiy1 — ti. If in the current interval the
regularized Gauss-Newton scheme does not converge to a specific tolerance
within a number of iterations (here set to 4),

thus redefining a new guess t;; for t;.i:

1

1
At; = 0.8y - Aty with  ~ = (l> : (31)
err
where ”
err = H nlo ik dqu®) || (32)
AbsTol + RelTol - “—— |l 12




THE FORWARD PROBLEM

Continuation method

Proposition
Let W(t,) € R™ be the solution found with PIRPNN at the end
of the time interval [t,_1 ti]. Then, an initial guess for the
weights of the PIRPNN for the time interval [t tx.1] is given
by:

~o  dW(g) &7

W . (33)
dt ||®|[3

where W° € R™*N s the matrix with the initial guess of the
output weights of the m PIRPNNs and ® € RN s the vector
containing the values of the random basis functions in the

interval [ty  ti+1].



The Forward Problem: think on Latent Spaces and High Dimensions

The Belousov-Zhabotinsky chemical reactions model is given
by the following system of seven ODEs:" "

dA dY
—_ =—KAY, — =—KAY XY+ K7,
1 1 i ! 2 A Y + K:
dX dP
—_— —_ . 2 — * ¥ 52 . | | 1 b
- = kAY — XY+ kBX - 2kX°, — = kXY, (52) _o -ode?it]]
dB dz d Y —
P =it 2 opax-iE PR - ”"Llﬁ"f‘ ;
dt dt dt _& -RPNN}
T %
L 0% 9, 1
. i S
b = D ~ f’ O )
o - "
--ig__ | 4 WK ©--¢
E- 3! 1 4
=~
1084 % ‘
¥ Q
£
: . “]-m L :
0 1 2 3 0 1 2 3

execution time (8}

execiition time (8)



Comparison with DeepXDE

TABLE!, Lotka-Volterra™ ODEsin theinterval [0, 1), see Eq. (55). Mean computational fime in seconds (s) and approximation errors (-norm, [°-norm and MAE) for (indicatively)
the r component w.rt. the reference solution computed with ode 15 with relative and absolute tolerances setto 1 x 10~" and 1 x 10~ respectively. The PIRPNN solutions
are computed with relative tolerances ranging from 1 x 10-" to 1 x 10-%, and the DeepXDE PINN solutions with 3, 4, 5, 6 hidden layers with 8, 16, 32, 64 neurons, respectively.

TIME (s) I-error I _error MAE

tol=1x 107" 6.75 x 107% 211 x 107% 872 x 107™ 1.22x 107™

RPNN tol=1x 107" 7.93 x 1077 233x107% 9.75 x 107% .38 x 1077
tol=1x 107 1.19 x 107" 1.50 x 10~ 6.27 x 107% 8.92 x 10777

tol=1x10~% 1.24 x 107" 1.00 x 10~ 414x 107 6.29 x 107%

3x8 6.39 x 10 2.31 x 10 6.50 x 107" 1.71 x 107"

DeepXDE 4x 16 4,04 x 10° 297 x 10" 1.24 x 107" 1.70 x 107"
5x 32 1.20 x 10° 395x 107" 1.63 x 1072 232x 107"

6 x 64 173 x 103 8.03 x 1078 2.99 x 107 5.04 x 107%

Our scheme is around 20 000 times faster than

DeepCDE for getting

a comparable numerical accuracy!




Numerical Solution of PDEs

Lin(x;; w) = f(any(x;;w), A\), i=1,....Mq
B;ﬁN(Xk;W):g,f(Xk). k= ._....M,r._ /:13....!’!’1.

By approximating the solution with RPNNs, we get a system of M
nonlinear equations (number of collocation points) with N unknowns
(number of hidden neurons) that can be rewritten in a compact way as
Blw, 2))=0. k=1,..., M where for k = 1....., Mg, we have:

i=1

while for the /-th boundary condition, for k =1, ..., M, we have:

N N
Fk(W‘ )\) — B',- (Z M{Ft‘(nj s X 3_},)) — B (Z Vl-';f'l;"'.‘(l'_'t'j “ Mg ljj)) == 0,
f—#%

i=1




Coupling with Numerical Bifurcation Theory Tools

Solution branches past saddle-node bifurcations (limit/turning points) can
be traced by applying the so called “pseudo" arc-length continuation method
(Chan and Keller, 1982). This involves the parametrization of both i(w)
and A by the arc-length s on the solution branch. The solution is sought in
terms of both {i(w;s) and A(s) in an iterative manner, by solving until
convergence the following augmented system:

Vb NaF| dw!™(s) o F(w'"(s),\(s)) (36)
VN VaN| |[dXO(s) | T | N(aG(w™;s), XD(s)) |
where .
8F;  OF F
VaF = [Bf Y a_ﬂ




The one- and two-dimensional Liouville—Bratu—Gelfand
Problem

The Liouville—Bratu—Gelfand model arises in many physical and
chemical systems. |t is an elliptic partial differential equation

which in its general form is given by:
Au(x) + xe"X) =0 x € Q, (42)
with homogeneous Dirichlet conditions
u(x) =0, x € . (43)

The domain that we consider here is the Q = [0, 1]¢ in
Re, d=1,2



The one dimensional Liouville=Bratu—Gelfand Problem

Analytical Solution

The one-dimensional problem admits an analytical solution given
by (Mohsen, 2014):

u(x) =2ln coshC;(Slhf 2x) where 6 is such that coshf = %
(44)

For 0 < A < A, the problem admits two branches of solutions
that meet at A\, ~ 3.513830719, a limit point (saddle-node
bifurcation) that marks the onset of two branches of solutions

with different stability, while beyond that point no solutions exist.




The one dimensional Liouville—Bratu—Gelfand Problem _

Numerical Accuracy

3 10f
—EIMSF L
g ——FELM RBF =
FD
—a—FEM 5
3 w10
= — — -Exact B
= @
=15 =
g &g
i 7] —s—ELM SF L2 error s
—a—ELM RBF L2 rror — ]
RS 1 FO' L2 error
1{]-15 —e—FEM L2 armor
o : : ; y 1 2 3
o 0.2 04 06 0.8 1 10 10 100
x log10 M
ELMSE i0° b
B —— ELM REF]| =
s D .
| —es— FEM o =5
2 ——Exact g
= [
ol =
- POy = gy
al —=—ELM RBF L2 emor =
—+—FD¥ L2 error
—a—FEM |2 arror
0 107 1 2 3
o 0.2 0.4 0.6 0.8 1 10 10 100
= log10 N

(c) (d)

Flgu Fe. (a) unstable solution at A = 3 for N = 40. (b) L> with respect to the exact unstable
solution at A = 3 w.r.t N. (c) unstable solution at A = 0.2 N = 40. (d) L with respect to the exact

unstable solution at A = 0.2 w.r.t N.



The one dimensional Liouville—=Bratu—Gelfand Problem

Execution Times

ELM SF ELM RBF
N 5% mean 95% 5% mean 95%
80 | 7.16e-03 8.14e-03 9.27e-03 | 2.07e-03 2.31e-03  2.61e-03
160 | 3.81e-02 4.23e-02 4.93e-02 | 3.53e-03 4.31e-03 4.96e-03
320 | 1.09e-02 1.16e-02 1.30e-02 | 7.12e-03 7.96e-03 8.57e-03
640 | 3.19e-02 3.38e-02 3.58e-02 | 2.81e-02 3.01e-02 3.17e-02
FD FEM

N 5% mean 95% 5% mean 95%
80 1.93e-04 2.60e-04 2.65e-04 | 2.58e-03 2.88e-03  3.03e-03
160 | 5.72e-04 7.01e-04 8.24e-04 | 5.76e-03 6.32e-03  6.89e-03
320 | 1.59e-03 1.86e-03 2.08e-03 | 1.15e-02 1.17e-02 1.20e-02
640 | 8.77e-03 9.07e-03 9.40e-03 | 3.00e-02 3.11e-02 3.21e-02

Table: Execution times for the Bratu PDE with Dirichlet boundary

conditions and A = 1.
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Solving the Inverse Problem

HAVE MODEL 00O = NUMERICAL ANALYSIS
DESIGN CONTROLLERS
ODES/PDEs/SDEs
ODES/PDEs/SDEs
SURROGATE MODELS
DISCRETE MAPS
B
]
HAVE EXPERIMENT > PERFORM IDENTIFICATION

DATA MACHINE LEARNING




Solving the Inverse Problem with MACHINE LEARNING

Gonzalez-Garcia, Rico-Martinez, Kevrekidis, Identification of distributed
parameter systems: A neural net based approach, Computers & chemical
engineering, 22,5965-5968,1998
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Figure 2: Evaluation of the right-hand-side (RHS) of the set of ODEs: On the left, at a point
and on the right, for all points of the grid to form the vector of RHS F.
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HAVE MODELS. Classical Feedback Linearization: The idea

Consider the problem of designing a controller for a nonlinear system of the form

x(k+1) = f (x(k),u(k))

Transform the nonlinear equations into a linear system by a means of feedback
and/or change of variables. After this a linear stabilizing state feedback is designed

2-Step Implementation:

1. Find a state transformation z = 7(xX) and an input transformation # = ¥(x,v)
so that the nonlinear system dynamics is transformed into a equivalent
linear time-invariant dynamics controllable system of the form

2(k +1) = Az(k) + bv(k)

2. Use standard linear techniques (e.g. pole placement) to design v (k) = - K z(k)

However, applicability is severely limited by a set of rather restrictive conditions

(Isidori, Nonlinear control systems, 3" Ed, Springer, 1995)




Feedback Linearization in 1 step x(k+1) = f(x(k),u(k))

The motivation: By-pass the restrictive conditions >
Overcome step 1: intermediate step of transforming the original
nonlinear system

into a linear controllable one with an external reference input
The proposed idea: 1-Step Implementation: Seck to simultaneously implement a
nonlinear operator z= 7/(X) and

a state feedback control law ©# = - ¢ z = -C 1(x)
that induce linear closed loop dynamics in a single-step: | z(k+1)= A z(k),

z(k+1)= T(x(k+1)) = T(f(x(k),-cT(x(k)) ) = 4 z(k) = AT(x)

Solve the system of Nonlinear Functional Equations T(f‘ (x,-c T(x) ): 4 T(x),

Under a set of assumptions, the above system of NFE’s admits a unique locally analytic and
invertible solution




Feedback Linearization in 1 step: Assumptions

The following assumptions are made:

Assumption 1: The (n x n) matrix C: 5 9

1 n—1

C= [G\JG’\...U G] Jza_f.m‘u) Gzi_f([}}m £ ()
has rank n: rank(C) = n (local controllability rank condition). - du

Assumption 2: The eigenspectrum o(A) of matrix A comprises eigenvalues: k; € o(A), i = 1, ...n that all lie inside
the unit disc on the complex plane (Poincaré domain).

Assumption 3: The eigenspectra o( A), o(.J) of matrices A and J respectively are disjoint: o(A) N o(J) = (.

Assumption 4: The eigenvalues k; of A are not related to the eigenvalues A; of the Jacobian matrix .J through any
equations of the type:

)

Ty
[Tk -,
i=1

( T=%0s -n.), where all the m;’s are non-negative integers that satisfy the condition:
T
Z ;>0 o
i—1

Assumption 5: The pair of matrices (¢, A) is chosen such that the following matrix O:

¢

cA

.

has rank n: rank(O) = n (observability rank condition on the (c, A) pair).



Feedback Linearization in 1 step via Physics-Informed Neural Networks

( fita)) = f‘{{ —r?‘{zrl_:l}
nj'-"(:.-] =0,

Vargas Alvarez H., Fabiani, F., Kazantzis, N., Siettos,
C., Kevrekidis, 1.G., 2023, Discrete-Time Nonlinear
Feedback Linearization via Physics-Informed
Machine Learning. Journal of Computational

Physics, 478, 111953.

7 (3 9 31.’%
ik (5pe(0:P)
k=1

L

M =n
Z T'[ji -L'z.;'u 3'1.1: }‘I‘Z 2} {TJ(G P)) ‘|‘Z

t
3=1

“}{rh T'(z:)) = ’fj (f(.‘l?.g._. —ﬂfj[_:l-‘i))) — {ij_‘(ﬂ?;‘)T §=1 . M, =12 .. .5
where a is the j-th row of the matrix A and 7} is j-th output component of 7', and:

2 o 3 . dT; ol :
j(]}(o)) - I.'?(G): ""_E.k}(ﬂ'kﬂ(ﬂ}) y :_}(U) - ﬁ(n)v g, k=1,2,...,m,

where g—:i— (0) is the (7, k)-th element of the Jacobian matrix of T'(:x) computed at the equilibrium, obtained by solving
the system of equations in ( 14).Notice that for our illustrations, in the loss function, we consider all three terms equally
weighted.

oT ... 3f dT

of T
L (0)5(0,0) ~ AZ-(0) = SO 2L 0,005 (0).




Finally in order to compute the Jacobian matrix ﬂ , let’s consider the j-th component, say F of the transformation
T=(Ty,T,..., f_, ..., T, so that the elf:ment (;, k) of the Jacobian matrix is given by:
6 NQ } J'V] n -\1'
ro ((2) 2 1 2 2 1 r(1
g 0 = YWl (Lo (S ) ) (S wPwid (i )
i=1 h=1 a=1 h=1 ‘
(24)

and equivalently, in matrix form is expressed as follows:

3—% — Wi (@’(W@% (WO 4 g0) 4 g@) g (WW (W e {1)’1(W“}T.;:+,3“))))). (25)

where W7(9 is the j-th column of the matrix W(?),

The derivative of the loss function w.r.t. an unknown parameler. say. p € P is calculated as follows:

ar (3)

(Jf.{P) M n 0, (2] n
o Z A SO 5 26)

i=1 =1 j= =1 k=1

Hence, for the three residuals "), = 1, 2.3, we have:

rA-|_ i Trﬁ'r i
e L) Ry

p0T(x:)), 70T (1) )
= (= ———) — @ 27
dp dp du = dp )~ dp )
s B e
Op dp
O\ (ax, Tj(w0)) 02Ty
: (o) (29)
dp © Apday,
t—Tlue M  Bde—=lispans pelP (30)



e forp= W2

hg -
aT( ) .{2} J'V| I’V(z} -{1]‘ M;(l} q(]') ?{2) = .
(-Ph, Z,ﬂ:l zh (Pg "L + 8 + "I‘ Ef q J {%l}
{0) , . g
oW, 0 if  q#]
 forp = ij)
(32(;) Wo,é 2 (Zw( an(z W{llikﬂgm) B 2))(5,(11(2 Wil ukﬂqm) (32)
.h k=1 k=1
» forp = W}E;)
ofy(r) _ S @ 40
P 5w (S (S wies + ) +40) (Wil (S Whs + 610
6Wh-q i=1 s=1 k=1 k=1
(33)
e forp =B\
cﬁ‘f}(m) _J1 if h=j _
 forp = ,f:?f)
BIJ{(:;) uff) ﬁi'h (Z w {'2 (1) (Z W{l} Tk == ﬁ(l}) —+ 3(2 ) (35}
ﬁ,ﬁh s=1 k=1

. for-p = 3(1)

) = Sl (St (S wthon ) ) (e (S i+ ) +47)
i=1

(36)
Hector Vargas Alvarez, Gianluca Fabiani, Nikolaos Kazantzis, Constantinos Siettos, loannis G Kevrekidis,

Discrete-Time Nonlinear Feedback Linearization via Physics-Informed Machine Learning. 2023,
arXiv preprint arXiv:2303.08884




Feedback Linearization in 1 step via PINNs: The problem

z1(t + 1) = exp(0.322(t)) /(1 + z1(t) + x2(t)) — 1 — 0.425(¢) + 0.5u(t)
ot +1) =0.5In(1 + z1(t) + 22(t)) + 0.4zo(t)
1(D(x,-c1(x) )=AT(x), T(0)=0

The Jacobian matrix of the above system at the equilibrium (0,0) is %(D:{]) - \‘gg HgJ and its eigenvalues

A; — 0.2101 and A3 — 1.1899. The matrix A is chosen to be A — [32 ggl with eigenvalues k; — 0.8405 and

ko = 0.0595. Due to the choice of matrix A, its eigenvalues are not related to the eigenvalues of the Jacobian matrix
-gé (0,0) through any equations of the type (5), (6). Moreover, the following row vector ¢ was chosen:

c=[1 0].

T1(exp(0.322(6))V/ (1 + 21 (t) + 22(t)) — 1 — 0.425(t) — 0.5T7,
0.5 ]_T.l(l + 1 (f:} -+ .I?g(fi)} + U.ilfrg(i}) = (0.5T77 + 0.3715

To(exp(0.3x9())\/ (1 + 1 (t) + x2(t)) — 1 — 0.429(t) — 0.5T7,
0.5In(1 4+ 21(t) + xa(t)) + 0.4xa(t)) = 0.577 + 0.475
T1(0,0) =0
T5(0,0) =0,




Feedback Linearization via PINNs: The problem

T L 3
0.0 =[5 1],

with a det[T] 0, results in a locally invertible around the equilibrium point (x1,z9) = (0, 0) solution, that can be
also calculated analytically in closed-form

Ti(x1,19) =In(1 + 21 +x9), To(x1,23) = T0.

_ _ the proposed feedback-linearizing and pole-placing nonlinear feedback control law
can be explicitly written as follows:

u=—cl'(r)=—In(l+ x; + x2).

£ -0.2

(a) (b)

Figure 2: Analytical solution of the NFEs (39) in [—0.495.0] x [-0.495.0]. (@) Ti(z1,22) = In(1 + z; + 29).

A steep-gradient at (—0.495, —0.495) is due to the presence of a singular point at (ry,z2) = (—0.5,—-0.5). (b)

To(x1,x0) = x9.
e



Training with Tensor Flow/Keras & Home-Made Matlab code

||
Automatic Differentiation :—s-o.;
2 hidden layers, < 04

S neurons each,
BFGS

(a)

Figure 2: Analytical solution of the NFEs (39) in [-0.495,0] x [—0.495,0]. (a) 71(z1,22) = In(1 + 21 + x2).
A steep-gradient at (—0.495, —0.495) is due to the presence of a singular point at (z1,29) = (—0.5,—0.5). (b)
Tolzi. o) = 20,

10° 107 102 10? 10* 10° 108 10° 107 102 10? 10* 10° 108
: U_EE_
o s 6-th order
. 2;2:, g 22 Polynomial Expansion
0.4 ik

04 03 o2 o1 o Train in the
entire
domain

PINN
Tensor Flow/Keras

(d)




Numerical Analysis and Continuation Matters!
— Integrate concepts from Numerical
Analysis & Dynamical Systems

| - Homotopy
- Continuation methods

| -
I
lI e . i

A a View PDF Download full issue

Journal of Computational Physics
Volume 492, 1 November 2023, 112408

-

Gianluca Fabiani, Evangelos Galaris, Lucia Russo, and Constantinos Siettos
Parsimonious physics-informed random projection neural networks for initial
value problems of ODEs and index-1 DAEs, Chaos 33, 043128 (2023) (Editor’s
Pick)

Proposition Discrete-time nonlinear feedback

Let W(t,) € R™ be the solution found with PIRPNN at the end linearization via physics_informed
ti]. Then, an initial guess for the . .

machine learning

tis1] is given

of the time interval [t;_,
weights of the PIRPNN for the time interval [ty

Hector Vargas Alvarez 2, Gianluca Fabiani ® 9, Nikolaos Kazantzis ?,
2=

Zonstantinos Siettos © 2 i, loannis G. Kevrekidis ** "

by:
~o dW(t) @7
= ‘ 33
dt[o]2 33

where W € R™N s the matrix with the initial guess of the
output weights of the m PIRPNNs and ® € RN s the vector
containing the values of the random basis functions in the

interval [t tis1].
C



Numerical Analysis and Continuation Matters!

Table 1: Model explicitly available. Training sets (grids of 20 x 20) equispaced distnibuted points). Error norms (L.
Lo and L..) between the analytical and computed solution of T (x4, x2) and T5{x1.x2) using the vanous schemes

trained both greedy-wised and in the entire domain [—0.495, 0] x [—0.495,0|.

Error norm | power-senies PIML(TF) PIML{Mailab) PIML(TF)
6ih order Entire domain Greedy Greedy

-l 6. 76E+01 6.28E-+00 2.03E-03 3.65E-02

T1(x1,x2) I-ll2 3.62E4+00 3.13E+00 1.12ZE-03 3.26E-02
-}l 1.21E+00 2 81E+00 1.05E-03 3.10E-02

-1l 0 1.40E+-00 6.33E-03 6.61E-02

T2(x1,x2) l}-ll= 0 1.00E+00 1. 40E-03 3.68E-02
-l 0 5.04E-01 673E-04  1.00E_02

Table 2: Model explicitly available. Test sets (grids of 50 x 50 Chebyshev-distributed points). Error norms ( L. L2 and
L) between the analytical and computed solution of T (z1,x2) and T5(x1, x2) using the vanous schemes trained

both greedy-wised and in the entire domain [—0.495, 0] x [-0.495,0].

Error norm | power-series PIML(TF) PIML(Matlab) PIML(TF)

Gih order Entire domain Greedy Greedy

T1xlx2 -1 6.80F+ 01 2.1TE4+01 340E-02  L11E_01
(x1,x2) I-ll2 4556400  1.44E401 263E-03  1T2E-02
-llo 2.88E+00 1.O0E+01 141E-03  11IE-02

-y 0 2 87TE+00 145E-02  222E_01

T2(x1,x2) I-ll2 0 1.97E +-00 1.55E-03  145E-01
-flo< 0 1.23E-+00 7.62E-04  128E-01




That is the question

...to Learn Or Not to Learn?

Equation-Free

2 Numerical Analysis
29 Toolkit

Physics-Informed ML/
Deep Learning

- When we have only Data/

No high-fidelity simulators - When we have

Agent-Based (ABs) simulators
- When we want to get some physical

- When we want to do numerical
bifurcation analysis
(also accurately identify tipping points)

Closures

\
k"

- When we want to run something man \t \\
. s . e g y A - .
times “quick and dirty - When we want to design controllers

for Abs i data-dri
- When we have some physical insight or Absin a data-driven way

(variables, a generic PDE) for the emergent Dynamics - Name it!
and want to refine it through high-fidelity simulations



Numerical Analysis of Dynamical Systems

- Have Equations (ODEs/ PDE’s) ou(x,t) = L(u(x,t),p)
ot

« Can apply terrific numerical analysis and control methods
*(e.g. finite elements, bifurcation analysis, feedback linearization )

u( x,t) @ u(x,t+7)
Maps/Large-Scale Systems Analysis i

Jacobian too big to apply direct solvers (e.g. Newton-

Raphson, Jacobi)
J \
- Instead, use well-established iterative linear algebra methods

(matrix-free methods). — ' —
J(X;)-e= lim £(x; +2¢) ~1(x,) %

>0 &

-These are based on input-output data and can be used for finding steady states
(even unstable ones!), critical eigenvalues and eigenvectors
(Kelley, Iterative methods for linear & nonlinear Equations, 1995)

- As example, the Arnoldi eigensolver in the next slide.....




Methods in the Krylov Subspace: Arnoldi Eigensolver & GMRES

No need of “transparent” equations, just a black box code that will integrate

it over a step size that it has been chosen.
SYSTEM AROUND THE STEADY STATE
Yia =Py,)

Black-Box

Code

® ~®
Aq = (yk+82) 0o

GMRES =—» SOLVE AX=B

Critical o
Eigenvalues

1

ARNOLDI

0.5 4

\
0 - ‘ R
0.9 0.925 0.95 0.975 14

On= {% s A, yornes Am_lqm‘l }

H, = QZ;AQm h..

y

Set ¢, with ||g,|=1

Forj=I1,m
1 .
(1) Calculation qu

(2) Calculation ht’j = <qu,qt>,t =1,24000y]]
J
@ 1, =Aq,- D h 4,
=1
1/2
@ h,,, =r,r)

® G =1 1h

End For

J+Lj




What if we have an Agent-based simulator (High-

Fic|e||ty S|mu|ator$ but not a ROM “’DES or UDES)

in a closed form?

LE+1 %@ Tk, P)

Thus, let as assume, that we have an agent-based dynamical model that, given a
atomistic/individual-based/ detailed distribution of states

U,=U(tx) e RN, N >> 1
attime . = k77 will report the values of the evolved /detailed

distribution after a time interval 177

Uks1 = Cry (Ur, p)

Cr, : RN x R™ — RV s the time-evolution agent-based operator




The assumption for building ROMs

Upy1 =Cry (Upg, p) C'T,. : R'I\r x R™M™ — R"\r N>>1

A basic assumption that we will make is that after some time { T!_"

The emergent coarse-grained dynamics are governed by a few variables, say

e R"n<< N

Usually, these «few» observables are the first few moments of the
underlying microscopic distribution.

This implies that there is a slow coarse-grained manifold that can be
parametrized by x



The assumption for building ROMs

Fenichels’theorem

For the existence of a coarse-grained slow manifold 1 Microscopic dynamice

- o Uisr = Cry (U, p)
U1 =Cry(Ug, p) Cn, : B % 8® - RN

—

This implies that exists a slow coarse-

grained manifold: acroscoplc
Lk4+1 = X(&?;\-.yk.p.f) Dynamlcs

€Ypt+1 = Y (Tk, Yp, P, €) & JA+1 = lx. p,€)

Trajectories in the neighborhood of a coarse-grained

By Fenichel’s theorem: T|+1 — X(mk- X(QB;;. P. 6). p) saddle point. Starting from a detailed distribution (point A)

the system will. under the assumptions, relax on the

slow coarse-grained manifold, E, (AB orbit). Then the

on a smooth manifold defined by coarse-grained dynamics will evolve towards the coarse-grained
unstable manifold (BC orbit)

M, = {(z,y) € B" x RS : y = x(,p, €)}



Bridging micro to macro: The Equation-Free Approach

.. or else .... How to find fixed points without the equations
(Kevrekidis et al., Comm. Math. Sciences, 1, 715-762, 2003)
Bifurcation
Results Parameter
Coarse Bifurcation Code [*
Matrix-free based ri
coarse IC | PDE-based - = -
r-=—-=-- B | Timestepper ] : .
| -Restrict
! |
° e - i emeoas mmes
Llft . | I I" -7 look Ma!
. : W - - no Equations!
| U AticrosfOpics U~ . J q '
. Large Scale —>| Microscopic/ oo
, —>| Large Scale
A0S o NS N -

I . Timestepper I .

.V\IJW I_ . :

. — . . J ' — . —. J




The Equation-Free Approach: Restrict and Lift

From distributions to continuum level variables and back

& L]
0.0008 -
Maxwell-Boltzmann ® .
1 distribution of speeds e
" (calculated for He(g)) ® a9 e
® @
] — T=2000K . @
- — T=27315K *+ ‘ees o®
.. ® ]
- 8 2]
I BB m=|)? o 2
0.0001 - o | g eV

1 = T ] \*‘_-_hl-
2000 4000 6000 8000
speed (1, m s™)
312
probability density 7,y - [ M ] A - g~ MRT



SLOW & FAST DYNAMICS

dp

it = f(p,q)

dq _l

P g(,q)
! ,q)=~0
' > ¢ small=> g(p Aq) }
Po p q=q(p)

Sosoon p=f(p,q)~ f(p,4(p)) = f(p) Singular perturbed systems

SIan 1 S CosdTirT '-FE-' I Saciuty for Industirial and Appiicd Maithomatics
Vel 4, No 0, pp. 10348
Sidam.

Code and Data
Available

SLOW INVARIANT MANIFOLDS OF SINGULARLY PERTURBED
SYSTEMS VIA PHYSICS-INFORMED MACHINE LEARNING © bt o

DIMITRIS PATSATEIST, GIANLUCA FABIANI®, LUCLA RUSS(H, aND CONSTANTINOS SIETTOES




Next Generation Scientific Machine Learning

Bridge niche Numerical Analysis (Equation-Free) and SciML (PINNs,
DeepONet) to create Emergent Latent Spaces in which the New
Physics will be learned and and solved!

~“small
Euclidean
distance

geodesic
distance

DeepONet




Numerical Analysis with No Equations, No Variables.

Next Generation Scientific Machine Learning

Manifold
Learning

M-écroscale (PDES) This is Mr Smith from Big Data Mining.
He says he's found an insight.
/ dp(r,t)
Cq Cp (= = g(p, Py, Prv)
=t A ' dt n
gl WL e
ORI/ st =) fien
C~ C A a3 =2
K = Mesoscaié (Lattice-Boltzmann)
o o T 4| [ilr ¥l tess) = fi(n i) + 0 6 + R 1)
(=] 4 ®
m; collision :
Bt gt |
Vi “5p, _ d?',
e\ o, ¥ ..rl/_. E - v[
¥ A
Microscale (particles) m; dt = F;

Time-scale
e



Data-Driven Encoding- Decoding

Encoder mystrom Extension to DMs) coder (Geometric Harmonics)

Coifman, R.R. and Lafon, S., 2006. Geometric harmonics: a novel tool for

multiscale out-of-sample extension of empirical functions. Applied and
Computational Harmonic Analysis, 21(1), pp.31-52.

Goal: Find mapping between X € RY & y € RY for new out-of-sample data

Nystrom expansion

Tah dimensional data

" 004
Image problem

H03r

orithm 1 Solving the pre- gy probdom with CGeometrie Hlsrmonkos

whre X ¢ RM=N | € R™¥ o - § Ar) i
405 whrm W RMEA Ly © R - ) M) hi i
X 0 .0 X 015001 0005 0 0005 0.01 0015 0,02 0.028 Prn ot the buvin for .
2 1 . % ;
¥ wlFiEi 0, 4
Geometric Harmonics f tiore i WA T,
-
A — gl -Jk{u]" R i S sl
.
aedort K rigrialurs oy seul ragraveciors wy of A s thal oy > Sy, wish & - | K
I |
Fiwa E - deuglo, ) C HE"" apl W ¥y e MR
I |
Roguoire: ¥* c RY Y v c B0 - 01, K) b newi i am FPAEe g
# : ]
K |L“| = ] (l!";_"‘i)l | Ll i {mmcrises, b e
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Next Generation Equation-Free

Journal of Computational Physics
Volume 478, 1 April 2023, 111953

Data-driven control of agent-based
models: An Equation/Variable-free
machine learning approach

Dimitrios G. Patsatzis ® Lucia Russo @ 9, 5%, loannis G. Kevrekidis °,

Constantinos Siettos © 2 =
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New machine-learning approach improves ability to
predict long-term brain activity based on fMRI data G&3
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W) Check for updates
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DISCOVERING EVOLUTION AND SOLUTION
OPERATORS FROM DATA
The DEEP-O-NET

Training data

Input function u Output function G (u) Lu, L., Jin, P., Pang, G. et
at fixefi Sensors Li;: .. ; T at random location y al Learning nonlinear operators via
2 ® o7 ’ _
A i ’ DeepONet based on the universal
1 Voo e’ approximation theorem of
e 1, - p operators. Nat Mach Intell 3, 218—
._.__...&-*‘. Tm R s 229 (2021)
ml-r?
u(zy)
U\Ir9
U —» ”(. ) —> Branch net }<
u(Tm)

G (u)(y)

Y —>» Trunk net }<

¢ o0B||l¢ &®




DISCOVERING EVOLUTION AND SOLUTION

OPERATORS FROM DATA

Chen, T. & Chen, H. Universal approximation to nonlinear operators by neural
networks with arbitrary activation functions and its application to dynamical
systems. IEEE Trans. Neural Networks 6, 911-917 (1995).

Theorem 1 (Universal Approximation Theorem for Operator).
Suppose that o is a continuous non-polynomial function, X is a Banach
space, K, Cc X, K; C R are two compact sets in X and R, respectively,
V is a compact set in C(K,), G is a nonlinear continuous operator,
which maps V into C(K,). Then for any € > 0, there are positive integers
n, p and m, constants cr, fﬁ ér, & € R, wp € R4, xeK,i=1,....n,
k=1,...,pandj=1,....,m, such that

P H 1
G(u)(y) — E E L‘fﬂ E é”;‘}u(a‘t{f) —|—‘!5"':i fr{wk -}*—kf;'kl < €
~ ! - trunk

g

branch

(1)

holds for allue Vand y€ K,. Here, C(K) is the Banach space of all con-
tinuous functions defined on K with norm || fl| oy = maxxex|f(x)|.




RandONet: Shallow-Networks with Random

Projections for learning linear and nonlinear

operators

DeepOnets are powerful but expensive:
High-dimensional parameter space
Significant computational cost
Require parallel/GPU-based hardware
Hence, they may result in moderate
numerical approximation accuracy

L@

Lo E o B

RandOnets

We introduce Random projection-based

Operator Networks to deal with the above-

mentioned challenges.

We employ:

o Random projections

o Shallow Feedforward Neural Networks

o Established nice numerical analysis least-
squares solvers for near-optimal accuracy
and extremely fast training

Theoretical findings
Building on previous works, we prove the
universal approximation property of RandOnets

1

) discretizatio

Branch

' Random

T

Johnson—Lindenstrauss
1

Wip Wig . Wig

W1 Wap ... Wag
T, T3 T L

War Waz «Wyg

[ul(y) = (T, B)y

Training

Cinear Least-Squarss:
(Tikhonov, SVD, QR)

['he proposed scheme

o embeds the space of the spatial locations ()
o embeds the space of the discretized functions
onto randomly parametrized embeddings such as
the Johnson-Lindenstrauss for linear operators and
random fourier features for nonlinear operators

Numerical Results

We focus on the approximation of evolution
operators (right-hand-sides) of PDEs.
First, we consider some pedagogical ODE
examples

o antiderivative operators

o a gravity pendulum with external force
PDE evolution operators:

o Linear Diffusion-advection-reaction

o The Burgers” Equation

o The Allen-Cahn Phased Field PDE

Conclusion
RandONets outperform the vanilla DeepOnet in
terms of numerical approximation accuracy and

‘computational times by orders of magnitude




RandONet: Shallow-Networks with Random Proiections

for learning linear and nonlinear operators

Proposition 1. Let K C R compact and U < C(K) compact and consider a parametric family of random activation functions
{(za) 1> £ B, & A}, where ¢ € A is a vector of randomly chosen (hyper) parameters, and assume that v are
uniformly bounded in RBY x A. Let p be a probability distribution on A. Given any e, there exists a V = [ and i.i.d. sample

ey, -+ - .oy from p, chosen independently of f, such that for every f € U the random approximation
N
fele) = ¢lfTu(m; ay), 27)
j=1
approximates [ in the sense that with high probability
I — Jellz2g) < & (28)
for a suitable probability measure i over K. Moreover, if 'z e} = (o - &), for a L-Lipschitz function 1, the above

approximation is uniform (i.e. in the supremum norm).

o

Proposition 2 (Random Projection Neural Networks (RPNNs) for functionals). Adopting the framework from Proposition 1,
and additionally, let U be a compact subset of C{K ) and . be a continuous functional in I'. Let us define the compact set U, C

B of vectors, whose elements consist of the values of the function u € U on a finite set of m grid points &,....,x,, < B and
denote the vector u := [u(x),.. .. u(zm)] € B™.
Then, with high probability, w.r.t. p, for any € = 0, there exist M, m € [, ey, ..., oy € A, 1.1.d distributed from p, such that:

<€, Yuell (37

o=

M
lFI{u} — Z'H-'i'-.'ﬂ (ei - u(z))
. =i




RandONet: Shallow-Networks with Random Proiections

for learning linear and nonlinear operators

Theorem 3.5 (RandONet universal approximation for Operators). Adopting the framework of propositions 1.2 and the notation
of Theorem 3.2, and additionally, let: X be a Banach Space, and K; C X, Kz IP&“'_.U C €Ki} be compact sets, and
F : U — C{Kz) be a continuous (in the general case nonlinear) operator. Then, with high probability w.r.t. p. for any ¢ > 0,
there exist positive integers M, N, m € M, and network (hyper)parameters r:tfr'” ..... E!?.F'” e AP iid distributed from

Pa such that:
N M
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where the superscripts fr, tr correspond to branch and trunk networks and can be chosen in generally independently.
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Case study 3: 1D Linear Diffusion-Advection-Reaction PDE

As a first example for the learning of the evolution operator, we consider
a simple 1D linear Diffusion-advection-reaction problem, described by:
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where v = 0.1,
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MI modsl.

MSE 5% L? | median-L* | 95% L? comp. time
DeepOnet [5, 5] 4.74E+01 | 3.42E401 | 6.30E4-01 | 1.04E+402 | 2.18E4-03 (GPU)
DeepOnet [10, 10] 2.03E+01 | 1.88E+01 | 4.15E+01 | 6.81E+01 | 2.20E+03 (GPU)
DeepOnet [20, 20] L.5TE+00 | 6.68E+00 | 1.09E+01 | 1.95E+01 | 2.31E+03 (GPU
DeepOnet [40. 40] 1.69E—01 | 2.29E4+00 | 3.73E+00 | 6.30E-+00 | 2.30E4+03 (GPU)
RandONet JL (100) | 4.33E—17 | 3.14E—08 | 5.98E—08 | 1.02E—07 | 1.83E—02 (CPU)
RandONet—RFFN (500) | 7.03E—11 | 2.14E—05 | 5.87E—05 | 1.56E—04 | 1.02E—01 (CPU)
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(Deep Learning)

4.2.3 Case study 5: 1D Allen-Cahn phase-field PDE

Here we consider the nonlinear evolution operator of the Allen-Cahn equation, described by:

e 32 4
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where we set the parameter v+ = 01.01.

Table 5: Case study 5: 1D Allen-Cahn phase-field PDE in Eq. (62). We report the mean Squared Error (MSE) and percentiles
(median, 55— 955 of the [ approximation error for the test set. We use 2400 training functions. Here, we depict, indicatively,
the results with a vanilla DeepOnet with 2 hidden layers with [N, N] neurons. We set N' = 5, 10, 20, 40, DeepOnets are trained
with 50'000 Adam iterations (with learning rate 0.001 and then 0.0001). We report the RandONets encompassing Johnson-
Lindenstrauss (JL) Featured branch network (with A/ = 40 neurons) and the Random Fourier Feature branch Network (RFFN)
(with M = 2000).

ML-model MSE 5% 1.~ median—-L* | 95% L* comp. time
DeepOnet |5, b LL7TSE—03 | 1L.57TE—-01 | 3.50E—01 | 7.2BE—01 | 3.20E4+03 (GPU)
DeepOnet [10, 10] 1.oOE—04 | 640E—-02 | 1.04E—01 | 2.12E-01 | 3.03E+03 (GPU)
DeepOnet (20, 20 S5.62E-05 | 349E-02 | 5.52E—02 1.28E—01 [ 3.39E4+03 {(GPU}
DeepOnet [40, 40 J.10E-05 | 2.39E—-02 | 4.06E—02 | 9.38E-02 | 3.49E+03 (GPU)
RandONet—JL (40) 242E—04 | TO6IE-02 | 1.04E—-01 | 2.77E-01 | 2.32E—-02 (CPU)
RandONet—RFFN (2000 | 3.15E—10 | 1.28E—-04 | 1.60E—04 | 2.60E—04 | 3.20E4-00(CPL)
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"ARTIFICIAL INTELLIGENCE":

Training deep-learning models increases energy
and resource consumption

The multi-layered machine-learning processes of Al-based systems are becoming increasingly
complex and need large amounts of compute and energy’’. The different applications generally use
pre-trained, customized models.
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Deep Learning with black-box optimization
is NOT appropriate for Accurate Numerical Analysis
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Fredholm Neural Networks
Kyriakos Georgiou, Constantinos Siettos, Athanasios N. Yannacopoulos

Within the family of explainable machine-learning, we present Fredholm neural networks (Fredholm NNs), deep neural networks (DNNs) which replicate
fixed point iterations for the solution of linear and nonlinear Fredholm Integral Equations (FIE) of the second kind. Applications of FIEs include the solution
of ordinary, as well as partial differential equations (ODEs, PDEs) and many more. We first prove that Fredholm NNs provide accurate solutions. We then
provide insight into the values of the hyperparameters and trainable/explainable weights and biases of the DNN, by directly connecting their values to the
underlying mathematical theory. For our illustrations, we use Fredholm NNs to solve both linear and nonlinear problems, including elliptic PDEs and
boundary value problems. We show that the proposed scheme achieves significant numerical approximation accuracy across both the domain and
boundary. The proposed methodology provides insight into the connection between neural networks and classical numerical methods, and we posit that it
can have applications in fields such as Uncertainty Quantification (UQ) and explainable artfficial intelligence (XAl). Thus, we believe that it will trigger
further advances in the intersection between scientific machine learning and numerical analysis.

Within the family of explainable machine-learning, we present Fredholm
neural networks (Fredholm NNs), deep neural networks (DNNs) which
replicate fixed point iterations for the solution of linear and nonlinear
Fredholm Integral Equations (FIE) of the second kind.
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