
Scientific Machine Learning:
a basic Intro,

Open problems and Challenges

Constantinos Siettos

Department of Mathematics and Applications “Renato Caccioppoli”

www.siettos.net Research Group
NUMADICS

Numerical Analysis, Machine Learning and
Data Mining for Complex and Multiscale Systems

• Film: Morte di un Matematico Napoletono

Adler et al, npj Digital Medicine volume 2, Article number: 115 (2019)

Scientific Machine Learning
Scientific Machine Learning brings together the complementary perspectives
of computational science and computer science to craft a new generation
of machine learning methods for complex applications across science
and engineering. In these applications, dynamics are complex and
multiscale, data are sparse and expensive to acquire, decisions have high
consequence, and uncertainty quantification is essential.

1 Extract from Data Useful Information
and Meaningful Patterns

2 Create Models to Interpret how the
Data Behave and Predict their Dynamics

Computational Simulations

Scientific Machine Learning

For many Complex Systems,

The Physics (models or even variables) to describe
the Emergent dynamics are not always known/ are imprecise

Main Objectives for Complex Systems

2 Systematically Bridge Micro and Macro
Scales : THE INVERSE PROBLEM

• Construct Surrogate Models at
different Scales with Machine
Learning

Numerical Analysis/ Control

1 Discover Variables from Data/ Agent-
Based Simulations

• Numerical Analysis
- Forward-Problem: Solving DAEs-PDEs

- Bifurcation Analysis

Big Data, GPUs, Big! number of available microscopic/
agent-based models simulating the time evolution of Complex
Systems (Biological Systems, Material Science, Complex Fluids, Epidemics,
Neurons)

Εξισώσεις

Ροπών

Επιλύτες
Συνήθων/Μερικών

Διαφορικών
Εξισώσεων

Macro Emergent) Scale

Mean-field
(moments)

ODE’s-PDE’s

•Material Science
•Epidemiology

•Bio
•Neurons
• Markets

Δυναμική
Molecular
Dynamics

Μικροσκοπικά /
Στοχαστικά

Δυναμικά μοντέλα

Agent-Based

Monte Carlo

Micro-Scale

Large-Scale
Microscopic
Models

Monte Carlo

-

Fokker Planck
εξίσωση

Fokker Planck
εξίσωση

Different time and space scales
Macro scales much much bigger
than the bigger Microscopic
scale

The analysis is usually sought
at this level (system-level analysis)

… but such good models not always exist
in closed form

Brownian D

A full 90 percent of
all the data in the
world has been
generated over the
last two years.

Every day, 3.3
quintillion
bytes of data
(Million
terabytes)
created every
day

The Flourishing of SciML

Complex vs. Complicated or Chaos

Collective patterns emerging
from many interacting
components,

…decomposing the system and
analyzing subunits does not
necessarily give us an idea of
the behavior as a whole

…the behavior of complex systems
is therefore unpredictable

…subunits are designed and
connected so that they
accomplish a pre-determined
(predictable or even Chaotic)
behaviour

The emergent dynamics is more
than the sum of the properties of
the individual units

A cell can take each time one of
the three states:

 1:Black, Burned Cell
 2:Green, Cell with Fuel/Wood
 3:Red: Fire

The evolution rules are
the following:

 Fire on a site will spread to nearest
neighbors cells with Fuel at the next
time step with probability p.

 All cells with Fire will be burned at
the next time step.

at time t+1

At neighbor
cells

With probability
p

at time t

at cell (i, j)

Cell with Fire

At time t
At time t+1

Burned

The notion of Complexity: a simplistic! model of
Fire Spread

The notion of Complexity: simple behavioral rules
generate complex behavior.

P=0.44 P=0.46

Comparison of Brains and Traditional Computers

200 billion neurons, 32 trillion synapses

Element size: 10-6 m

Energy use: 25W

Processing speed: 100 Hz

Parallel, Distributed

Fault Tolerant

Learns: Yes

Intelligent/Conscious:

SomeTimes

• 64 billion bytes RAM but
trillionsbytes

• Element size: 10-9 m

• Energy watt: ~100W (CPU)

• Processing speed: ~309 Hz

• Serial, Centralized

• Generally not Fault Tolerant

• Learns: Some

• Intelligent/Conscious: No

• 1943, McCulloch-Pitts
neuron,

• 1949, Donald Hebb, The
Organization of Behavior

• 1957, The Perceptron, Frank
Rosenblatt

• 1959, Bernard Widrow and
Marcian Hoff "ADALINE"
and "MADALINE.

• 1970, Seppo Linnainmaa,
Back Propagation, then
Rumelhart et al.

• 1970-1985 Winter time
• 90s’ ANNs Universal

Approximation Theorems
• 2010- Deep Learning Era
• 2020- Generative AI

1943, McCulloch-Pitts neuron

Perceptrons
A perceptron is a single neuron that classifies a set of inputs into one of

two categories (usually 1 or -1).

The perceptron usually uses a step function, which returns 1 if the
weighted sum of inputs exceeds a threshold, and 0 otherwise.

1957, Frank Rosenblatt

Learning Rule in ADALINE
is the LMS ("least mean squares”)
1959, Bernard Widrow and Marcian
Hoff Adaptive Linear Neuron

Gradient Descent in “n” Dimensions
m:)f(w

 wf-ww  

Given

points in direction of steepest ascent.

GRADIENT DESCENT RULE:

Equivalently
 wf-

j
jj w

ηww



 ….where wj is the jth variable

 
 

 



























wf

wf

wf
1

mw

w


nn

n Maximum rate of change

Linear Perceptron Training Rule




R

k
k

T
kyE

1

2)(xw

Gradient descent tells us
we should update w to
minimize E:

j
jj w

E
ηww



 -

So what’s ?
jw

E













 R

k
k

T
k

jj

y
ww

E

1

2)(xw









R

k
k

T
k

j
k

T
k y

w
y

1

)()(2 xwxw


 




R

k
k

T

j
k w

δ
1

2 xw

k
T

kk yδ xw
…where…

 
 




R

k

m

i
kii

j
k xw

w
δ

1 1

2





R

k
kjk xδ

1

2

n

Linear Perceptron Training Rule




R

k
k

T
kyE

1

2)(xw

Gradient descent tells us how we
should update w to minimize E:

j
jj w

E
ηww



 -

…where…






 R

k
kjk

j

xδ
w

E

1

2





R

k
kjkjj xδηww

1

2

k
T

kk yδ xw

The linear perceptron algorithm
1) Randomly initialize weights w1 w2 … wm

2) Get your training dataset
3) for i = 1 to R

4) for j = 1 to m

5) if stop. Else go to 3.

iii y xw:





R

i
ijijj xww

1



 2
i

Gradient descent with sigmoid on a perceptron

      

   

    

    





 

 

 


































































































































 








 









 









k
kkiiii

iji
i

ii

k
ikk

jk
ikk

i k
ikki

k
ikk

ji k
ikki

j

i k
ikki

k
kk

xwy

xgg

xw
w

xwgxwgy

xwg
w

xwgy
w

xwgy

xwg

xgxg
xexexexexe

xe

xe

xe
xg

xe
xg

xgxgxg

net)Out(x where

net1net2

'2

2

Out(x)

1
1

1
1

1

1

1

1
2

1

1
2

1

11

2
1

' so
1

1
 :Because

1' notice First,

2





 



R

i
ijiiijj xggww

1

1









 



m

j
ijji xwgg

1

iii gy 

The sigmoid perceptron
update rule:

where

+ +-

Multilayer Networks
The class of functions representable by perceptrons is limited

  







 

j
jj xwgg Out(x) xw

Use a wider representation !

















 

k
jkjk

j
j xwgWg Out(x) This is a nonlinear function

Of a linear combination
Of non linear functions

Of linear combinations of inputs

: Deep Learning
Single-layer artificial neural networks, have limitations in terms of
the types of functions they can approximate.

1970, Seppo Linnainmaa, Back
Propagation, then Rumelhart et al.

by automatic differentiation (chain rule)

Backpropagation Algorithm
Create a feed-forward network with nin inputs, nhidden hidden units, and nout output units.

Initialize all network weights to small random numbers
Until termination condition is met, Do

For each <x,t> in training examples, Do
Propagate the input forward through the network:

1. Present Input x to the network and compute the output ou of every u in the network
Propagate the errors backward through the network:

2. For each network output k=1,2,…, nout calculate its error term δk

3. For each hidden unit h=1,2,… nhidden, calculate its error term δh

4. Update each network weight wji

))(1(kkkkk otoo 





outputsk

kkhhhh woo )1(

jijiji www 
jijji xw 

(with GD)

Improving Gradient Descent
Gauss-Newton’s method

)|(|
2

1
)()(3

2

2

hh
w

h
w

hwhw O
EE

EE TT 









If we neglect the O(h3) terms, this is a quadratic form

ww
ww


















EE
1

2

2

This should send us directly to the global minimum if the
function is truly quadratic.

Choose an initial vector of parameters w and learning rate

Repeat until an approximate minimum is obtained:

Randomly shuffle samples in the training set

Apply GD

End Until

Stochastic GD

stochastic optimization requiring first-order gradients computing individual adaptive
learning rates from estimates of first and second moments of the gradients; the
name Adam is derived from adaptive moment estimation.

Learning Algorithm:
Backpropagation

Pictures below illustrate how signal is propagating through the network,
Symbols w(xm)n represent weights of connections between network
input xm and neuron n in input layer. Symbols yn represents output signal of
neuron n.

Backpropagation

Backpropagation

Backpropagation
Propagation of signals through the hidden layer. Symbols wmn represent
weights of connections between output of neuron m and input of neuron n in
the next layer.

Backpropagation

Backpropagation

Backpropagation
Propagation of signals through the output layer.

Backpropagation
In the next step the output signal of the network y is compared with
the desired output value (the target), in training data set. The
difference is called error signal δ of output layer neuron

Backpropagation
The idea is to propagate the error signal δ (computed in the single
teaching step) back to all neurons, which output signals were input to
the reference neuron.

Backpropagation
The idea is to propagate error signal d (computed in single teaching
step) back to all neurons, which output signals were input to the
reference neuron.

Backpropagation
The weights' coefficients wmn used to propagate errors back are equal
to this used during computing output value. Only the direction of data
flow is changed (signals are propagated from output to inputs one after
the other). This technique is used for all network layers. If propagated
errors came from few neurons they are added. The illustration is
below:

Backpropagation
When the error signal for each neuron is computed, the weights
coefficients of each neuron input node may be modified. In formulas
below df(e)/de represents derivative of neuron activation function
(which weights are modified).

Backpropagation
When the error signal for each neuron is computed, the weights
coefficients of each neuron input node may be modified. In formulas
below df(e)/de represents derivative of neuron activation function
(which weights are modified).

Interpolation Theorem: if you have +1 points on a graph and no
two points share the same -value, you can always find one and
only one polynomial of degree that exactly goes through all of
these points.

Generalization

How Overfitting affects Prediction

Predictive
Error

Model Complexity

Error on Training Data

Error on Test Data

Ideal Range
for Model Complexity

OverfittingUnderfitting

Training and Validation Data

Full Data Set

Training Data

Validation Data

Idea: train each
model on the
“training data”

and then test
each model’s
accuracy on
the validation data

And then test the best model on the
Test data. This is the final accuracy

Test Data

50

25

25

The k-fold Cross-Validation Method

• Why just choose one particular 90/10 “split” of the data?
– In principle we could do this multiple times

• “k-fold Cross-Validation” (e.g., k=10)
– We partition randomly our full dataset into k disjoint subsets (each roughly of size n/k, n =

total number of training data points)
•for i = 1:10 (here k = 10)

–train on 90% of data in each subset (We use all combinations if the dataset is
limited.)
–Acc(i) = accuracy on other 10%

•end

•Cross-Validation-Accuracy = 1/k i Acc(i)

– choose the method with the highest cross-validation accuracy
– common values for k are 5 and 10
– Can also do “leave-one-out” where k = n
Split a dataset into a training set and a testing set, using all but one observation as part of the
training set. Repeat this process n times (where n is the total number of observations in the
dataset), leaving out a different observation from the training set each time.

Generalization: ANN
N = # hidden nodes m = # training cases
W = # weights error tolerance ε
Network will generalize with 95% confidence if:

1. Error on training set <

2.

 / 2

m O
W N

m
W

  (log)
  2

Universal Approximation Theorems for ANNs (late 80s-early ‘90s)

Single Layer NNs

Universal Approximation Theorems for ANNs (late 80s-early ‘90s)

Multilayer Layer NNs: Deep Learning
can approximate any Borel measurable function arbitrarily
closely.

Universal Approximation Theorems for ANNs (‘90s)

Chen, T. & Chen, H. Universal approximation to nonlinear operators by
neural networks with arbitrary activation functions and its application to
dynamical systems. IEEE Trans. Neural Networks 6, 911–917 (1995).

Non-linear Operators

Deep Learning 2020s

FORWARD PROBLEM

INVERSE PROBLEM

