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Adler et al, npj Digital Medicine volume 2, Article number: 115 (2019)

Scientific Machine Learning
Scientific Machine Learning brings together the complementary perspectives 
of computational science and computer science to craft a new generation 
of machine learning methods for complex applications across science 
and engineering. In these applications, dynamics are complex and 
multiscale, data are sparse and expensive to acquire, decisions have high 
consequence, and uncertainty quantification is essential.



1 Extract from Data Useful Information 
and Meaningful Patterns

2 Create Models to Interpret how the 
Data Behave and Predict their Dynamics

Computational Simulations

Scientific Machine Learning



For many Complex Systems,

The Physics (models or even variables) to describe
the Emergent dynamics are not always known/ are imprecise



Main Objectives for Complex Systems

2 Systematically Bridge Micro and Macro 
Scales : THE INVERSE PROBLEM

• Construct Surrogate Models at 
different Scales with Machine 
Learning

Numerical Analysis/ Control

1 Discover Variables from Data/  Agent-
Based Simulations

• Numerical Analysis
- Forward-Problem: Solving DAEs-PDEs

- Bifurcation Analysis



Big Data, GPUs, Big! number of available microscopic/ 
agent-based models simulating the time evolution of Complex 
Systems (Biological Systems, Material Science, Complex Fluids, Epidemics, 
Neurons)
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Different time and space scales
Macro scales much much bigger
than the bigger Microscopic
scale

The analysis is usually sought
at this level (system-level analysis)

… but such good models not always exist
in closed form

Brownian D

A full 90 percent of 
all the data in the 
world has been 
generated over the 
last two years.

Every day, 3.3 
quintillion 
bytes of data 
(Million 
terabytes) 
created every 
day

The Flourishing of SciML



Complex vs. Complicated or Chaos

Collective patterns emerging 
from many interacting
components,

…decomposing the system and 
analyzing subunits does not 
necessarily give us an idea of 
the behavior as a whole

…the behavior of complex systems 
is therefore unpredictable

…subunits are designed and 
connected so that they 
accomplish a pre-determined 
(predictable or even Chaotic) 
behaviour

The emergent dynamics is more 
than the sum of the properties of 
the individual units



A cell can take each time one of 
the three states:

 1:Black, Burned Cell
 2:Green, Cell with Fuel/Wood
 3:Red: Fire

The evolution rules are 
the following:

 Fire on a site will spread to nearest 
neighbors cells with Fuel at the next 
time step with probability p.

 All  cells with Fire will be burned at 
the next time step.

at time t+1

At neighbor 
cells

With probability 
p

at time t

at cell (i, j)

Cell with Fire

At time t
At time t+1

Burned 

The notion of Complexity: a simplistic! model of 
Fire Spread



The notion of Complexity: simple behavioral rules 
generate complex behavior. 

P=0.44 P=0.46







Comparison of Brains and Traditional Computers

200 billion neurons, 32 trillion synapses

Element size: 10-6 m

Energy use: 25W

Processing speed:  100 Hz

Parallel, Distributed

Fault Tolerant

Learns: Yes

Intelligent/Conscious: 

SomeTimes

• 64 billion bytes RAM but 
trillionsbytes 

• Element size: 10-9 m

• Energy watt: ~100W (CPU)

• Processing speed: ~309 Hz

• Serial, Centralized

• Generally not Fault Tolerant

• Learns: Some

• Intelligent/Conscious: No

• 1943, McCulloch-Pitts 
neuron, 

• 1949, Donald Hebb, The 
Organization of Behavior

• 1957, The Perceptron, Frank 
Rosenblatt

• 1959, Bernard Widrow and 
Marcian Hoff  "ADALINE" 
and "MADALINE.

• 1970, Seppo Linnainmaa, 
Back Propagation, then 
Rumelhart et al.

• 1970-1985 Winter time
• 90s’ ANNs Universal 

Approximation Theorems
• 2010- Deep Learning Era
• 2020- Generative AI







1943, McCulloch-Pitts neuron 



Perceptrons
A perceptron is a single neuron that classifies a set of inputs into one of 

two categories (usually 1 or -1).

The perceptron usually uses a step function, which returns 1 if the 
weighted sum of inputs exceeds a threshold, and 0 otherwise.

1957, Frank Rosenblatt



Learning Rule in ADALINE 
is the LMS ("least mean squares”)
1959, Bernard Widrow and Marcian 
Hoff Adaptive Linear Neuron



Gradient Descent in “n” Dimensions
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Linear Perceptron Training Rule
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Linear Perceptron Training Rule
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The linear perceptron algorithm
1) Randomly initialize weights  w1 w2 … wm

2) Get your training dataset
3) for i = 1 to R

4) for  j = 1 to m

5) if             stop.  Else go to 3.
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Gradient descent with sigmoid on a perceptron
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Multilayer Networks
The class of functions representable by perceptrons is limited
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Of non linear functions

Of linear combinations of inputs

: Deep Learning
Single-layer artificial neural networks, have limitations in terms of 
the types of functions they can approximate.



1970, Seppo Linnainmaa, Back 
Propagation, then Rumelhart et al.

by automatic differentiation (chain rule)



Backpropagation Algorithm
Create a feed-forward network with nin inputs, nhidden hidden units, and nout output units.

Initialize all network weights to small random numbers 
Until termination condition is met, Do

For each <x,t> in training examples, Do
Propagate the input forward through the network:

1. Present Input x to the network and compute the output ou of every  u in the network
Propagate the errors backward through the network:

2. For each network output k=1,2,…, nout calculate its error term δk

3. For each hidden unit h=1,2,… nhidden, calculate its error term δh

4. Update each network weight wji
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(with GD)













Improving Gradient Descent
Gauss-Newton’s method
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This should send us directly to the global minimum if the 
function is truly quadratic.



Choose an initial vector of parameters  w and learning rate 

Repeat until an approximate minimum is obtained:

Randomly shuffle samples in the training set

Apply GD

End Until

Stochastic GD



stochastic optimization requiring first-order gradients computing individual adaptive 
learning rates from estimates of first and second moments of the gradients; the 
name Adam is derived from adaptive moment estimation.



Learning Algorithm:
Backpropagation

Pictures below illustrate how signal is propagating through the network, 
Symbols w(xm)n represent weights of connections between network 
input xm and neuron n in input layer. Symbols yn represents output signal of 
neuron n.



Backpropagation



Backpropagation



Backpropagation
Propagation of signals through the hidden layer. Symbols wmn represent 
weights of connections between output of neuron m and input of neuron n in 
the next layer.



Backpropagation



Backpropagation



Backpropagation
Propagation of signals through the output layer.



Backpropagation
In the next  step the output signal of the network y is compared with 
the desired output value (the target), in training data set. The 
difference is called error signal δ of output layer neuron



Backpropagation
The idea is to propagate the error signal δ (computed in the single 
teaching step) back to all neurons, which output signals were input to 
the reference neuron.



Backpropagation
The idea is to propagate error signal d (computed in single teaching 
step) back to all neurons, which output signals were input to the 
reference neuron.



Backpropagation
The weights' coefficients wmn used to propagate errors back are equal 
to this used during computing output value. Only the direction of data 
flow is changed (signals are propagated from output to inputs one after 
the other). This technique is used for all network layers. If propagated 
errors came from few neurons they are added. The illustration is 
below:



Backpropagation
When the error signal for each neuron is computed, the weights 
coefficients of each neuron input node may be modified. In formulas 
below df(e)/de represents derivative of neuron activation function 
(which weights are modified).



Backpropagation
When the error signal for each neuron is computed, the weights 
coefficients of each neuron input node may be modified. In formulas 
below df(e)/de represents derivative of neuron activation function 
(which weights are modified).





Interpolation Theorem:  if you have +1 points on a graph and no 
two points share the same -value, you can always find one and 
only one polynomial of degree that exactly goes through all of 
these points. 



Generalization

How Overfitting affects Prediction

Predictive
Error

Model Complexity

Error on Training Data

Error on Test Data

Ideal Range
for Model Complexity

OverfittingUnderfitting



Training and Validation Data

Full Data Set

Training Data

Validation Data

Idea: train each
model on the
“training data”

and then test
each model’s
accuracy on
the validation data

And then test the best model on the 
Test data. This is the final accuracy

Test Data

50

25

25



The k-fold Cross-Validation Method

• Why just choose one particular 90/10 “split” of the data?
– In principle we could do this multiple times

• “k-fold Cross-Validation” (e.g., k=10)
– We partition randomly our full dataset into k disjoint subsets (each roughly of size n/k, n = 

total number of training data points)
•for  i = 1:10  (here k = 10)

–train on 90% of data in each subset (We use all combinations if the dataset is 
limited.)
–Acc(i) =  accuracy on other 10%

•end

•Cross-Validation-Accuracy =  1/k  i Acc(i)

– choose the method with the highest cross-validation accuracy
– common values for k are 5 and 10
– Can also do “leave-one-out” where k = n
Split a dataset into a training set and a testing set, using all but one observation as part of the 
training set. Repeat this process n times (where n is the total number of observations in the 
dataset), leaving out a different observation from the training set each time.



Generalization: ANN
N = # hidden nodes m = # training cases
W = # weights error tolerance ε
Network will generalize with 95% confidence if:

1. Error on training set < 

2. 

 / 2

m O
W N

m
W

  ( log )
  2



Universal Approximation Theorems for ANNs (late 80s-early ‘90s)

Single Layer NNs



Universal Approximation Theorems for ANNs (late 80s-early ‘90s)

Multilayer Layer NNs: Deep Learning
can approximate any Borel measurable function arbitrarily 
closely.



Universal Approximation Theorems for ANNs (‘90s)

Chen, T. & Chen, H. Universal approximation to nonlinear operators by 
neural networks with arbitrary activation functions and its application to 
dynamical systems. IEEE Trans. Neural Networks 6, 911–917 (1995).

Non-linear Operators



Deep Learning 2020s



FORWARD PROBLEM

INVERSE PROBLEM


