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of the curse of dimensionality in optimizaton





SHALLOW NEURAL NEWTORKS





. Rahimi, B. Recht, Weighted sums of random kitchen sinks: replacing minimization with randomization in 
learning., in: Nips, 2008,263 pp. 1313–1320.

Function in RKHS



The Forward Problem: think on Latent Spaces and High Dimensions

Theorem







The Forward Problem: think on Latent Spaces and High Dimensions



Comparison with DeepXDE

Our scheme is around 20 000 times faster than 
DeepCDE for getting
a comparable numerical accuracy!

















HAVE MODEL NUMERICAL ANALYSIS
DESIGN CONTROLLERS

HAVE EXPERIMENT
DATA

PERFORM IDENTIFICATION
MACHINE LEARNING

Solving the Inverse Problem

ODES/PDEs/SDEs

ODES/PDEs/SDEs

SURROGATE MODELS
DISCRETE MAPS



Solving the Inverse Problem with MACHINE LEARNING



HAVE MODELS. Classical Feedback Linearization: The idea

Transform the nonlinear equations into a linear system by a means of feedback
and/or change of variables. After this a linear stabilizing state feedback is designed 
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Consider the problem of designing a controller for a nonlinear system of the form

2-Step Implementation:

1. Find a state transformation z = T(x) and an input transformation u = Ψ(x,v)
so that the nonlinear system dynamics is transformed into a equivalent
linear time-invariant dynamics controllable system of the form
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2. Use standard linear techniques (e.g. pole placement) to design v (k) = - K z(k) 

However, applicability is severely limited by a set of rather restrictive conditions
(Isidori, Nonlinear control systems, 3rd Ed, Springer, 1995)



Feedback Linearization in 1 step

The motivation: By-pass the restrictive conditions 
Overcome step 1: intermediate step of transforming the original 

nonlinear system 
into a linear controllable one with an external reference input

Solve the system of Nonlinear Functional Equations 
(NFE’s)

T(f (x,-cT(x) )=AT(x), 
T(0)=0

z(k+1)= T(x(k+1)) = T(f(x(k),-cT(x(k)) ) = A z(k) =  AT(x) 

Under a set of assumptions, the above system of NFE’s admits a unique locally analytic and 
invertible solution
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The proposed idea: 1-Step Implementation: Seek to simultaneously implement a 

nonlinear operator z= T(x) and  

a state feedback control law u = - c z = -c T(x) 
that induce linear closed loop dynamics in a single-step:      z(k+1)= A z(k), 



Feedback Linearization in 1 step: Assumptions



Feedback Linearization in 1 step via Physics-Informed Neural Networks

Vargas Alvarez H., Fabiani, F., Kazantzis, N., Siettos, 
C., Kevrekidis, I.G., 2023, Discrete-Time Nonlinear 
Feedback Linearization via Physics-Informed 
Machine Learning. Journal of Computational 
Physics, 478, 111953.





Hector Vargas Alvarez, Gianluca Fabiani, Nikolaos Kazantzis, Constantinos Siettos, Ioannis G Kevrekidis, 
Discrete-Time Nonlinear Feedback Linearization via Physics-Informed Machine Learning. 2023,
arXiv preprint arXiv:2303.08884



Feedback Linearization in 1 step via PINNs: The problem

T(Φ(x,-cT(x) )=AT(x), T(0)=0



Feedback Linearization via PINNs: The problem



Training with Tensor Flow/Keras & Home-Made Matlab code

Automatic Differentiation 
2 hidden layers, 
5 neurons each, 
BFGS

6-th order 
Polynomial Expansion

PINN
Tensor Flow/Keras

Train in the 
entire 

domain



Numerical Analysis and Continuation Matters!

Integrate concepts from Numerical 
Analysis & Dynamical Systems
- Homotopy
- Continuation methods

Gianluca Fabiani, Evangelos Galaris, Lucia Russo, and Constantinos Siettos 
Parsimonious physics-informed random projection neural networks for initial
value problems of ODEs and index-1 DAEs, Chaos 33, 043128 (2023) (Editor’s
Pick)



Numerical Analysis and Continuation Matters!

T1(x1,x2)

T2(x1,x2)

T2(x1,x2)

T1(x1,x2)



That is the question

…to Learn            Or              Not to Learn?

- When we have only Data/ 
No high-fidelity simulators - When we have

Agent-Based (ABs) simulators

Equation-Free
Numerical Analysis 
Toolkit

- When we want to get some physical 
insight on the  Differential Operators/ 
Closures

- When we want to do numerical 
bifurcation analysis
(also accurately identify tipping points)

- When we want to  design controllers 
for Abs in a  data-driven way

- When we have some physical insight
(variables, a generic PDE) for the emergent Dynamics
and want to refine it through high-fidelity simulations

Physics-Informed ML/
Deep Learning

- When we want to run something many 
times “quick and dirty”

- Name it!



Numerical Analysis of Dynamical Systems

• Have Equations  (ODEs/ PDE’s)

• Can apply terrific numerical analysis and control methods 
•(e.g. finite elements, bifurcation analysis, feedback linearization )
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Jacobian too big to apply direct solvers (e.g. Newton-
Raphson, Jacobi)

- Instead, use well-established iterative linear algebra methods
(matrix-free methods). 

-These are based on input-output data and can be used for finding steady states 
(even unstable ones!), critical eigenvalues and eigenvectors

- As example, the Arnoldi  eigensolver in the next slide…..

Maps/Large-Scale Systems Analysis

J(xi ) e  lim
  0

f(xi  e) f(xi )



(Kelley, Iterative methods for linear & nonlinear Equations, 1995)
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SYSTEM AROUND THE STEADY STATE

y(k)
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ε q

Black-Box
Code

Methods in the Krylov Subspace: Arnoldi Eigensolver & GMRES 

In step m the algorithm creates an orthogonal basis in
Krylov subspace Κm
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The projection of Α in Κm results to an upper
Hessenberg                            with elementsm
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(1) Calculation 
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Critical
Eigenvalues
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No need of “transparent” equations,  just a black box code that will integrate 
it over a step size that it has been chosen.

GMRES SOLVE AX=B



What if we have an Agent-based simulator (High-
Fidelity simulator) but not a ROM (PDEs or ODEs) 
in a closed form?

Thus, let as assume, that we have an agent-based dynamical model that, given a 
atomistic/individual-based/ detailed distribution of states

at time will report the values of the evolved /detailed

distribution after a time interval

is the time-evolution agent-based operator



The assumption for building ROMs

A basic assumption that we will make is that after some time

The emergent coarse-grained dynamics are governed by a few variables, say

Usually, these «few» observables are the first few moments of the 
underlying microscopic distribution.

This implies that there is a slow coarse-grained manifold that can be 
parametrized by x

Ν>>1



The assumption for building ROMs

This implies that exists a slow coarse-
grained manifold:

on a smooth manifold defined by

For the existence of a coarse-grained slow manifold

By Fenichel’s theorem:

Microscopic dynamics

Macroscopic
Dynamics

Fenichels’theorem



Bifurcation
Results

Coarse Bifurcation Code
Matrix-free based

Parameter

coarse IC PDE-based
Timestepper

Microscopic/
Large Scale
Timestepper

Microscopic/ 

Large Scale
IC’s…

…

Bridging micro to macro: The Equation-Free Approach

…. or else …. How to find fixed points without the equations

Lift

(Kevrekidis et al., Comm. Math. Sciences, 1, 715-762, 2003)

look Ma!
no Equations!

Restrict



The Equation-Free Approach: Restrict and Lift

From distributions to continuum level variables and back
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SLOW & FAST DYNAMICS

Singular perturbed systems



Next Generation Scientific Machine Learning

Bridge niche Numerical Analysis (Equation-Free) and SciML (PINNs, 
DeepONet) to create Emergent Latent Spaces in which the New 
Physics will be learned and and solved!

look Ma!
Equations!
Dy/dt=L(y)

DeepONet



Numerical Analysis with No Equations, No Variables.

Manifold 
Learning

Next Generation Scientific Machine Learning



Data-Driven Encoding- Decoding
Encoder (Nystrom Extension to DMs) coder (Geometric Harmonics)

Coifman, R.R. and Lafon, S., 2006. Geometric harmonics: a novel tool for 
multiscale out-of-sample extension of empirical functions. Applied and 
Computational Harmonic Analysis, 21(1), pp.31-52.



Next Generation Equation-Free
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DISCOVERING EVOLUTION AND SOLUTION 
OPERATORS FROM DATA

The DEEP-O-NET
Lu, L., Jin, P., Pang, G. et 
al. Learning nonlinear operators via 
DeepONet based on the universal 
approximation theorem of 
operators. Nat Mach Intell 3, 218–
229 (2021).



DISCOVERING EVOLUTION AND SOLUTION 
OPERATORS FROM DATA

Chen, T. & Chen, H. Universal approximation to nonlinear operators by neural 
networks with arbitrary activation functions and its application to dynamical 
systems. IEEE Trans. Neural Networks 6, 911–917 (1995).



RandONet: Shallow-Networks with Random 
Projections for learning linear and nonlinear 
operators https://arxiv.org/abs/2406.05470



RandONet: Shallow-Networks with Random Projections 
for learning linear and nonlinear operators

https://arxiv.org/abs/2406.05470



RandONet: Shallow-Networks with Random Projections 
for learning linear and nonlinear operators

https://arxiv.org/abs/2406.05470



RandONets (Embedded Shallow NNs vs DeepOnets 
(Deep Learning)



RandONets (Embedded Shallow NNs vs DeepOnets 
(Deep Learning)



ChatGPT consumes as much energy per day 
as 170.000 homes in the US



Deep Learning with black-box optimization
is NOT appropriate for Accurate Numerical Analysis

Within the family of explainable machine-learning, we present Fredholm 
neural networks (Fredholm NNs), deep neural networks (DNNs) which 
replicate fixed point iterations for the solution of linear and nonlinear 
Fredholm Integral Equations (FIE) of the second kind.



Machine 
Learning

Numerical
AnalysisMachineLearning



Research Group

THE GROUP
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