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Josephson junction

Electrical resistivity

Superconductor
Normal metal

Consists of 2 superconductors coupled by a weak link.

e Phase difference: ¢ = ¢ — or

e Josephson current-phase relation: I = Iy sin ¢ 2
Temperature (K)
e Josephson voltage-phase relution: 1/ — 21 % "
‘ Insulator
Superconductor Superconductor

Resistively Capacitively Shunted Junction model (RCSJ) AR AL
Contributions from displacement and ordinary currents are @o
modelled by the capacitor C and the resistance R. il
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RCSJ model
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RCLSJ model

' I Cdv+ o + I.sinf + 1
A c — ¢ Sin >
L leaky resistance d i TR 1 S
) ¢ = X ?{(V) | h do Ji
shunt inductor V= ——i=ls— IRy
2e dt dt

For high inductance and Ilow damping:
slow—fast dynamics and thus autonomous
bursting.

Biological neuron: Fast spiking of Na+ and K+
ions are controlled by a slow process like
Ca++ gated K+ ion movement.
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RCLSJ model
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SNIC/homoclinic type bursting (Izhikevich )

|s starts growing — the junction voltage
starts spiking via a SNIC bifurcation

The spiking amplitude grows until |s starts
decaying very slowly

|s growing rate is much faster than its decay
rate

During the decaying process of Is, the junction
voltage also starts decaying in a spiral motion
into the saddle focus via a homoclinic
bifurcation.

S. K. Dana et al., IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS (2006).



RCLSJ model

>

IS’ . s . . .
‘ Ré SNIC/homoclinic type bursting (Izhikevich )

Is starts growing — the junction voltage

X %R(V)
Lsé starts spiking via a SNIC bifurcation

e The spiking amplitude grows until Is starts

decaying very slowly

e Isgrowing rate is much faster than its decay
rate

e During the decaying process of Is, the junction
voltage also starts decaying in a spiral motion
into the saddle focus via a homoclinic
bifurcation.

S. K. Dana et al., IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS (2006).



Resistively coupled RCSJ model
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Inductively coupled RCSJ model (1)
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Inductively coupled RCSJ model (2)
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Crotty et al, “Josephson Junction simulation of neurons”, 2010



Inductively coupled RCSJ models
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Z | Na' Na' channels

5 | channels deactivate

2 | activate K ' channels

2 activate

[+

1™

=

§ All channels

-~ reach steady
1 state

RMPSstrezz- - —-- - - - \Cmnma S oo e

Stimulus lme




Dynamics: Excitability

Fixed parameters: (A;,A,,A) = (0.5,0.5,0.1)

Rewrite equations:

Q'bp = Wp
wp = —Tw —sin g, — A(de + @p) + Aslin + (1 — Ap)is
éc = We

wc — _ch _ Sin qbc _ )\(ch + qbp) + Aszm - Apiba

The fixed points are (¢}, 0, ¢%,0) where:

| | — PPTETEY
sin ¢ — sin (— Sm)‘% — ¢+ = ()\ p)zb)

sin ¢}, Astin+(1—A,)i

=

ip(arb. units)

Number of stable fixed points

-2 -1 0 1 2
iin (arb. units)

position and stability of fixed
points independent of '



Dynamics: Excitability

The equilibria disappear through a The equilibria disappear through a SN bif. and

Saddle-Node on an Invariant Circle the trajectory jumps to an existing LC which is

born through a homoclinic bif. at oM < 1SN
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Dynamics: Bifurcations and Chaos
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Route to chaos (I'=0.8)

Dynamics

C

¢« ~ O
dew US 3 dew .QQ

-0.2
-0.4
—0.6
-0.8

0.26

0.24

0.22

0.20

0.18

®p + Pc
D. Chalkiadakis & J. Hizanidis, PRE (2022)

lin



Dynamics: mapping of regimes

FP e /\/

most works on JJ neurons
focus on this regime where
the system exhibits

only spiking

FP&LC
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D. Chalkiadakis & J. Hizanidis, PRE (2022)
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Neurocomputation properties: Bursting

A burst is two or more spikes followed by a period of quiescence. Bursting occurs due to the
interplay of fast currents responsible for spiking activity and slow currents that modulate the
activity.

In the bistable regime small perturbations &(t) of =0.95, in=0.182, 0=0.06

the stimulus can switch spike trains on and off

5_
Lin —|_ f (t) =
u X

Gaussian white noise with zero mean and +
autocorrelation function: < 27

(E(E(T)) = 026(t — 7) | frfa]”L.JH ]

D. Chalkiadakis & J. Hizanidis, PRE (2022) 0 1000 2000 3000 4000
t




Neurocomputation properties: Spike latency

A barely superthreshold stimulation evokes action potentials with a significant delay.

Izhikevich, Computational Neuroscience 2007
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Different JJ neuron implementations

e Single RCSJ model shows simple spiking

e Single RCLSJ model shows bursting similar to slow-fast ionic
mechanism in real neurons

e Resistively coupled RCSJ neurons exhibit bursting based on
competition of excitable and oscillatory neuron

e Inductively coupled RCSJ neuron (1) shows bursting but mechanism
has not been studied



Different JJ neuron implementations

e Single RCSJ model shows simple spiking
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Different JJ neuron implementations

e Single RCSJ model shows simple spiking

e Single RCLSJ model shows bursting similar to slow-fast ionic
mechanism in real neurons

e Resistively coupled RCSJ neurons exhibit bursting based on
competition of excitable and oscillatory neuron

e Inductively coupled RCSJ neuron (1) shows bursting but mechanism
has not been studied

e Inductively coupled RCSJ neuron (2) mimics the exact neuron-like
spiking, bistability, chaos, noise-induced bursting and spike latency
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Implementation of a synapse

1st neuron lor
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Synapse 2nd neuron
The output is taken across the capacitor and
loz sent through a resistor to the input of a
bai  Pau R _’; fj postsynaptic neuron.
I X
s’"l Lo If the bias current applied to the JJ neuron is
b positive (negative) with respect to ground, then
™ the synapse is excitatory (inhibitory).
. e Desynchronization

e In-phase & anti-phase
synchronization
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Segall et al, “Synchronization dynamics on the picosecond time scale in
coupled Josephson junction neurons”, PRE (2017).

“SuperMind: a survey of the potential of superconducting electronics for
neuromorphic computing”, Schneider et al, Supercond. Sci. Technol. (2022).



Brains have been inspiring computers for decades

John von Neumann Alan Turing
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Neuromorphic Electronic Systems

CARVER MEAD

Invited Paper

PROCEEDINGS OF THE [EEE, VOL. 78, NO. 10, OCTOBER 1990




Motivation behind Neuromorphic Computing
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The parrot’s brain far outperforms today’s state-of-the-art

computer architectures (in speed, weight, power) by orders of
magnitude.

Architecture All Access: Neuromorphic Computing (Intel Technology)



s Conventional Computer

memory and computing are separate
(“von Neumann bottleneck”)

transistor area and wiring
resources are behind many
orders of magnitude

high-precisions reliable circuits
limited reconfigurability

ns, GHz very fast




Existing neuromorphic machines

- EERL 256 Millin
I Million N :L Synapses
Neurons : |

TrueNorth Chip
(IBM)

Machine learning applications
(image recognition)

Loihi 2 (Intel)

1 million neurons per chip
Applications: robotic skin with a sense of touch
National University of Singapore (NUS)



Different neuromorphic systems: comparison

Technology

Connections

Minimum lateral
size of neuron

Minimum lateral
size of synapse

Advantages

Disadvantages

Chip capabilities

Danijela Markovic et al. “Physics for neuromorphic computing”, Nature Reviews (2020)

CMOS synapses and
neurons

Wires
10 um

10 um

Commercially available

Size of neurons and
synapses, no in-memory
computing

Inference and learning

Resistive switching

synapses with
CMOS neurons

Wires
10pum

10nm

Nanoscale synapse,

technology ready

Size of neurons,
complex wiring

Inference

Photonic synapses and
neurons

Light
100 um

1um

Wavelength multiplexing,

can be completely
passive (low energy
consumption®**")

Size of neurons and
synapses, dissipation
required for nonlinearity

No chip

Spintronic synapses

and neurons

Microwaves

10nm

10nm

Nanoscale synapsds

and neurons,
almost commercial
technology

Scalability yet to be
demonstrated

No chip

Superconductive
synapses and neurons

Wires or microwaves

20nm
20nm

Low energy
consumption beside
cryogenic requirements,
allidentical spikes

Scalability yet to be
demonstrated

Josephson Junctions




High Performance Computing applications
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IBM quantum computer

Once you are working cryogenically already for Quantum Computing, why not build extra
neuromorphic devices using superconductors?



Neuromorphic computing: two approaches

1. Map Al algorithms to physical systems: Develop hardware (beyond
GPUs and TPUs) that is better suited to run current neural networks
(physical reservoir computing)

2. Match neuroscience-inspired concepts to hardware and software:

Implement neural networks that spike
(SNNs), feature memory, are stochastic, can
oscillate and synchronize (plasticity), are
excitable, exhibit bursting, and chaos....

DYNAMICS & COMPLEXITY




Work in progress and future ideas

e Dynamical properties and synchronization of bursting patterns in coupled
RCLS neurons (model 1) (with ECE AUTH student Giorgos Baxevanis)

e Study of JJ autapse known to be responsible for excitability switching

e Reservoir computing with JJ neurons/autapse (collaborator: Prof. Kathy
Luedge TU limenau, Germany)
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