What are complex systems and what techniques can we use to analyze them?

Cristina Masoller, Departament de Física, UPC

Summer School "Dynamical Systems and Complexity", Posidi, Halkidiki, Greece September 5, 2024

Campus d'Excel·lència Internacional

Outline

- Complex systems and data analysis
- Ordinal analysis: Lasers and neurons and climate data
- Hilbert analysis: Climate data
- Causal inference: Synthetic and climate data
- Regime transitions: laser, EEG and vegetation data
- Network analysis: Retina fundus images
- Take home messages

The Nobel Prize in Physics 2021

for groundbreaking contributions to our understanding of **complex systems**

½ Syukuro Manabe and Klaus Hasselmann ½ Giorgio Parisi

What is a complex system?

- High-dimensional, large number of interacting elements, heterogeneous structure, multiscale, memory, adaptation.
- The elements and/or the interactions are **nonlinear**.
- Often display abrupt transitions and extreme events.

G. Bianconi et al, *Complex systems in the spotlight: next steps after the 2021 Nobel Prize in Physics*, J. of Phys: Complexity 4, 010201 (2023).

The Climate System

Courtesy of Henk Dijkstra (Universidad de Ultrech)

Complex systems show "emergent" phenomena such as "synchronization"

Figure 1 | Fireflies, fireflies burning bright. In the forests of the night, certain species of firefly flash in perfect synchrony - here Pteroptyx malaccae in a mangrove apple tree in Malaysia. Kaka et al.² and Mancoff et al.³ show that the same principle can be applied to oscillators at the nanoscale.

In my opinion, what is NOT a complex system:

- Any system, large or small, that is described by linear equations.
- **Low dimensional nonlinear systems.**

Example: Lorentz system

$$
\begin{array}{rcl}\n\frac{dx}{dt} & = & -\sigma x + \sigma y, \\
\frac{dy}{dt} & = & -xz + rx - y, \\
\frac{dz}{dt} & = & xy - bz.\n\end{array}
$$

Data analysis methods allow to discover statistical similarities in different systems

Uncovering similarities between neurons and lasers… Interesting but relevant?

- **Data centers, AI systems, HPC consume** huge amounts of energy.
- Big concern in the context of climate change.
- The human brain processes huge amounts of information using only 19 Watts.
- **Uncovering genuine similarities between** neurons and lasers will allow to develop **photonic neurons**, able to process information as real neurons do, but
	- much faster,
	- with much less energy consumption.

European Centre for Medium-Range Weather Forecasts, Reading, UK

Photonic neurons

Excitable diode lasers can be artificial neurons in all-optical, ultra-fast, energy-efficient information processing systems.

Photonic neurons with diode lasers

- **Inexpensive**
- Compact, energy-efficient
- Emit wavelengths appropriated for telecom, Datacom and biomedical applications,
- Can be integrated in large arrays,
- Optically perturbed: Rich nonlinear dynamics

Therefore, we want to know:

Can diode lasers mimic real neurons?

How neurons encode information of weak external inputs in noisy environments?

Can the neural code be used by diode lasers?

Diode laser with optical feedback

The laser dynamics: excitability, tonic spikes and bursting. Similar to real neurons?

A. Aragoneses, S. Perrone, T. Sorrentino, M. C. Torrent and C. Masoller, "*Unveiling the complex organization of recurrent patterns in spiking dynamical systems*", Sci. Rep. **4**, 4696 (2014).

C. Quintero-Quiroz, J. Tiana-Alsina, J. Roma, M. C. Torrent, and C. Masoller, "*Characterizing how complex optical signals emerge from noisy intensity fluctuations*", Sci. Rep. **6** 37510 (2016).

A threshold is used to detect the spike times \Rightarrow Sequence **of inter-spike-intervals (ISIs)**

With an external signal, are there statistical similarities between neuronal spikes and laser spikes?

FIG. 1. (a) An experimental ISIH obtained from a single auditory nerve fiber of a squirrel monkey with a sinusoidal 80dB sound-pressure-level stimulus of period $T_0 = 1.66$ ms applied at the ear. Note the modes at integer multiples of T_0 . Inset:

A. Longtin et al. PRL (1991)

$$
2T_0 \quad 4T_0
$$

Experimental data when the laser current is modulated with a sinusoidal signal of period $\mathsf{T}_{\textnormal{o}}.$

A. [Aragoneses](http://www.opticsinfobase.org/oe/viewmedia.cfm?URI=oe-22-4-4705&seq=0&origin=search) et al. Optics [Express](http://www.opticsinfobase.org/oe/viewmedia.cfm?URI=oe-22-4-4705&seq=0&origin=search) (2014)

Return maps of inter-spike-intervals (ISIs)

Neuronal ISIs **Neuronal ISIs Laser ISIs**

 ΔT_{i+1}

A. Longtin Int. J. Bif. Chaos (1993) ΔT_i

M. Giudici et al PRE (1997) A. [Aragoneses](http://www.opticsinfobase.org/oe/viewmedia.cfm?URI=oe-22-4-4705&seq=0&origin=search) et al Optics [Express](http://www.opticsinfobase.org/oe/viewmedia.cfm?URI=oe-22-4-4705&seq=0&origin=search) (2014)

HOW TO INDENTIFY TEMPORAL ORDER?

How to characterize spike sequences? Analysis of inter-spike-intervals -ISIs

FIG. 1. Analysis of 10000 consecutive interspike intervals from a *P*-unit of the weakly electric fish A. Leptorhynchus (data courtesy of Mark Nelson, Beckmann Institute, Illinois, USA; we focus on such "nonbursty" units). Time is in EOD cycles; the EOD frequency is 755 Hz. The firing rate is 145 Hz which corresponds to $P = 0.192$. (a) Raster plot of ISI duration versus ISI number, (b) return map, (c) serial correlation, and (d) histogram.

Chacron, Longtin, et. al, Phys. Rev. Lett. 85, 1576 (2000)

Experiments in our lab with a diode laser with feedback

Aragoneses et al, Optics Express 22, 4705 (2014)

First data analysis method: ordinal analysis

$$
\{ \ldots X_i, X_{i+1}, X_{i+2}, \ldots \}
$$

Possible order relations among three numbers (e.g., 2, 5, 7)

Bandt and Pompe: Phys. Rev. Lett. 2002

The number of ordinal patterns increases as D!

A problem for short datasets.

U. Parlitz et al. / Computers in Biology and Medicine 42 (2012) 319-327

Example: chaotic time series generated with the Logistic map $x(i+1) = r x(i)[1-x(i)]$ r=3.99

"Normal" and "Ordinal" bifurcation diagrams of the Logistic map

Pattern **210** is always forbidden; pattern **012** is more probable as r increases

Using the "ordinal code", which is the message?

From a time series, by counting the different patterns, we can calculate the set of "ordinal probabilities"

Ordinal analysis has been extensively used:

- to test if a model is good for the data,
- to fit the model's parameters,
- to classify different types of data based on similarities of probabilities of ordinal patterns.

Permutation Entropy: A Natural Complexity Measure for Time Series

Christoph Bandt and Bernd Pompe

Institute of Mathematics and Institute of Physics, University of Greifswald, Greifswald, Germany (Received 19 June 2001; revised manuscript received 20 December 2001; published 11 April 2002)

I. Leyva, J. M. Martinez, C. Masoller, O. A. Rosso, M. Zanin, "20 Years of Ordinal Patterns: Perspectives and Challenges", EPL 138, 31001 (2022).

Software

Python and Matlab codes for computing the ordinal pattern **index** are available here: U. Parlitz et al. Computers in [Biology and Medicine 42, 319 \(2012\)](http://www.fisica.edu.uy/~cris/Parlitz_2012.pdf)

World length (wl): 4 $Lag = 3$ (skip 2 points) Result:

indcs=3

27

function indcs = $perm_indices(ts, wh, lag)$; $m = length(ts) - (wl - 1) * lag;$ $indcs = zeros(m,1)$: for $i = 1$: wl -1 : $st = ts(1 + (i-1) * lag : m + (i-1) * lag)$: for $i = i$: $wl-1$: $indcs = indcs + (st > ts(1 + j * lag : m + j * lag))$; end $indcs = indcs*(wl - i)$: end $indcs=indcs + 1$;

Example of application. ECG signals: analysis of time series of inter-beat intervals

Classifying ECG signals according to ordinal probabilities

- Analysis of raw data (statistics of ordinal patterns is almost unaffected by a few extreme values)
- The probabilities are normalized with respect to the smallest and the largest value occurring in the data set.

U. Parlitz [et al. Computers in Biology and Medicine 42, 319 \(2012\)](http://www.fisica.edu.uy/~cris/Parlitz_2012.pdf)

Sequence of inter-spike-intervals (ISIs) ⇒ sequence of ordinal patterns

Simulations of a neural model

To try to understand how neurons encode and process weak inputs in noisy environments.

31 J. A. Reinoso, M. C. Torrent, and C. Masoller, "*Emergence of spike correlations in periodically forced excitable systems*", Phys. Rev. E. 94, 032218 (2016).

How many spikes do we need to estimate the probabilities?

@cristinamasoll1 cristina.masoller@upc.edu

The patterns' probabilities depend not only on the period of the external signal, but also, on the level of noise.

The analysis of the ordinal probabilities uncovers similarities in the ISI sequences

cristina.masoller@upc.edu

Single-neuron vs ensemble encoding

- **Single-neuron encoding: slow** because long spike sequences are needed to estimate the ordinal probabilities.
- Ensemble encoding: can be **fast** because, from the ISI sequences of all the neurons, few spikes per neuron can be enough to accurately estimate the probabilities.

$$
\epsilon u_i = u_i - \frac{u_i^3}{3} - v_i + a_0 \cos(2\pi t/T) + \frac{\sigma}{k_i} \sum_{j}^{N} a_{ij} (u_j - u_i) + \sqrt{2D} \xi_i(t), \qquad i \neq j
$$

$$
\dot{v}_i = u_i + a.
$$

$$
\begin{cases}\n\dot{v}_i = u_i + a.\n\end{cases}
$$

$$
k_i = \sum_j a_{ij}
$$

$$
\begin{cases}\na_{ij} = a_{ji} = 1 \\
a_{ij} = a_{ji} = 0\n\end{cases}
$$

M. Masoliver and C. Masoller, "*Neuronal coupling benefits the encoding of weak periodic signals in symbolic spike patterns"*, Commun. Nonlinear Sci. Numer. Simulat. 88, 105023 (2020).

Spiking dynamics with/without coupling, with/without external input

Ensemble encoding of a weak sinusoidal signal in the frequencies of occurrence of ordinal patterns

M. Masoliver and C. Masoller, Commun. Nonlinear Sci. Numer. Simulat. 88, 105023 (2020).

Laser-neuron comparison: encoding a weak periodic signal using spike rate code.

J. Tiana-Alsina, C. Quintero-Quiroz and C. Masoller, "*Comparing the dynamics of periodically forced lasers and neurons*", New J. of Phys. 21, 103039 (2019).

How about the temporal code?

Ordinal analysis unveils differences in spike timing.

Most probable pattern in color code

J. Tiana-Alsina, C. Quintero-Quiroz and C. Masoller, New J. of Phys. 21, 103039 (2019).

Ordinal analysis of bivariate data. Are two time series statistically independent?

Mutual Information: $M_{ij} = \sum p_{ij}(m,n) \log \frac{p_{ij}(m,n)}{p_i(m)p_i(n)}$

 x_i , x_j statistically independent: p_{ij} = $\!p_i p_j \Rightarrow Ml$ =0

In practice: $M/$ >0 \Rightarrow surrogate data needed to test significance MI is not a causal measure: $MI_{ij} = MI_{ji}$

A simple example to shown that MI values are overestimated

Problem: a reliable estimation of MI requires a large amount of data.

> Using D=3 ordinal patterns (6 possible patterns, 36 possible combinations for *pij*) we need at least 400 data points in each time series.

Fig. 1. Naive estimation of the mutual information for finite data. Left: The dataset consists of $N = 300$ artificially generated independent and equidistributed random numbers. The probabilities are estimated using a histogram which divides each axis into $M_x =$ M_v = 10 bins. Right: The histogram of the estimated mutual information $I(X, Y)$ obtained from 300 independent realizations.

R. Steuer et al, Bioinformatics 18, suppl 2, S231 (2002).

Using lagged points to define the patterns allows to select the time scale of the analysis, very useful for seasonal data

@cristinamasoll1 cristina.masoller@upc.edu

Application: analysis of surface air temperature (SAT) anomaly in two geographical regions.

Anomaly = annual solar cycle removed

Reanalysis (data assimilation) 2.5° x 2.5° = 10226 grid points. In each point 696 anomaly values (1949-2006: 58 years x 12 months)

Mutual Information (color code) of SAT anomaly in El Niño region and other regions (white: MI not significant)

MI from

of SAT

values

anomaly

probabilities

J. I. Deza, M. Barreiro, C. Masoller, "Inferring interdependencies in climate networks constructed at inter-annual, intra-season and longer time scales", Eur. Phys. J. ST 222, 511 (2013).

Mutual Information (color code) of SAT anomaly in El Niño region and other regions (white: MI not significant)
 $M_{ij} = \sum_{m,n} p_{ij}(m,n) \log \frac{p_{ij}(m,n)}{p_i(m)p_j(n)}$

MI from probabilities of ordinal patterns defined by values in 3 consecutive months.

J. I. Deza, M. Barreiro, C. Masoller, "Inferring interdependencies in climate networks constructed at inter-annual, intra-season and longer time scales", Eur. Phys. J. ST 222, 511 (2013).

Comparison

 $M_{ij} = \sum_{m,n} p_{ij}(m,n) \log \frac{p_{ij}(m,n)}{p_i(m)p_j(n)} \label{eq:mass}$

probabilities of SAT values

probabilities of patterns defined by 3 values in a year.

probabilities of ordinal patterns defined by values in 3 consecutive months.

probabilities of patterns defined by values in 3 consecutive years.

J. I. Deza, M. Barreiro, C. Masoller, "Inferring interdependencies in climate networks constructed at inter-annual, intra-season and longer time scales", Eur. Phys. J. ST 222, 511 (2013).

Outline

- Complex systems and time series analysis
- **Ordinal analysis: Lasers and neurons and climate data**
- Hilbert analysis: Climate data
- Causal inference: Synthetic and climate data
- Regime transitions: laser, EEG and vegetation data
- Network analysis: Retina fundus images
- **Take home messages**

Hilbert Transform applied to Surface Air Temperature (SAT)

Clear physical meaning only if *x(t)* is a narrow-band signal. Then, *a(t)* coincides with the envelope of $x(t)$ and $\omega(t)=d\varphi/dt$, coincides with the main frequency in the spectrum.

Using the HT we analyzed "re-analysis data" from the *European Centre for Medium-Range Weather Forecasts***, with high spatial and temporal resolution in the period 1979-2016**

73 x 144 = 10 512 geographical sites, in each site the SAT time series has 13696 days

Average of the cosine of the Hilbert phase

1 July

Cosine of Hilbert phase during an *El Niño* period (October 2011)

Cosine of Hilbert phase during a *La Niña* period (October 2011)

How to detect significant changes in the last 30 years?

D. A. Zappala, M. Barreiro, C. Masoller, "Quantifying changes in spatial patterns of surface air temperature dynamics over several decades", Earth Syst. Dynam. 9, 383–391 (2018).

Outline

- Complex systems and time series analysis
- **Ordinal analysis: Lasers and neurons and climate data**
- Hilbert analysis: Climate data
- Causal inference: Synthetic and climate data
- Regime transitions: laser, EEG and vegetation data
- Network analysis: Retina fundus images
- **Take home messages**

Granger Causality

Hypothesis: X_1 and X_2 can be described by stationary autoregressive linear models.

$$
X_1(t) = \sum_{j=1}^p A_{11,j} X_1(t-j)
$$
Residual error
 + $E_1(t)$

$$
X_1(t) = \sum_{j=1}^p A_{11,j} X_1(t-j) + \sum_{j=1}^p A_{12,j} X_2(t-j) + E'_{1}(t)
$$

If $\langle E'_1(t)\rangle < \langle E_1(t)\rangle$ $X_2 \rightarrow X_1$

C. W. J. Granger C. W. J. Granger *Investigating causal relations by econometric models and cross-spectral methods*. *Econometrica* 37, 424–438 (1969).

Transfer Entropy (TE)

- Measures the amount of transfer of information between two random processes.
- TE: *Conditional* Mutual Information, given the past of one of the variables.

 $TE(x,y) = MI(x, y|x_\tau)$ TE $(y,x) = MI(y, x|y_\tau)$

- **THE and GC are equivalent for Gaussian processes.**
- Problems of TE and GC:

55 *Thomas Schreiber, Measuring information transfer, Phys. Rev. Lett. 85, 461 (2000).*

A "simple" solution

Use an analytical expression of the Transfer Entropy that is valid for Gaussian processes.

Does this work?

Sometimes.

Data generating processes and significance analysis

DGPs: We know whether X and Y are independent or not.

Significance analysis: time-shifted surrogates (cheap for causality testing) *Quiroga et al., Phys. Rev. E 65, 041903 (2002).*

Results

Power: there is causality and we find causality (True Positives) Size: there is no causality but we find causality (False Positives)

Material Controlling Service Street Action Cristinamasoll1

Comparison with Granger Causality and Transfer Entropy

Application to climate data NINO3.4 \leftarrow \rightarrow All India Rainfall

Monthly sampled (1836) **NINO 34**

 $NINO3.4 \leftarrow AIR$ **0.5 s 1 s 68 s** 40/9 3

How much time we save by using "pseudo Transfer Entropy"?

For two time-series of 500 data points (1 data point per month, 40 years):

TE:**112 ms** but pTE: **4 ms**

8000 grid points (high resolution) \Rightarrow 64 x 10⁶ pairs

⇒ 829 days (TE) vs. **29 days** (pTE).

(without "surrogate" analysis)

But, there is a price to pay, no "free lunch".

https://github.com/riccardosilini/pTE

R. Silini and C. Masoller "*Fast and effective pseudo transfer entropy for bivariate data-driven causal inference*", Sci. Rep. 11, 8423 (2021).

Directed network of climatic indices

Constructed using pTE with different lags

R. Silini, G. Tirabassi, M Barreiro, L. Ferranti, C. Masoller, "*Assessing causal dependencies in climatic indices*", Climate Dynamics 10.1007/s00382-022-06562-0 (2022).

Outline

- Complex systems and time series analysis
- **Ordinal analysis: Lasers and neurons and climate data**
- Hilbert analysis: Climate data
- Causal inference: Synthetic and climate data
- Regime transitions: Lasers, EEG and vegetation data
- Network analysis: Retina fundus images
- **Take home messages**

Regime transitions in complex systems

How to identify, characterize and predict regime transitions?

Counting the number of extreme values allows to distinguish different dynamical regimes

Panozzo et al, Chaos 27, 114315 (2017)

cristina.masoller@upc.edu @cristinamasoll1

 $Z = \frac{X - \mu}{\sigma}$

Classical indicators of approaching critical transitions

increase of variance and autocorrelation (*critical slowing down*)

Ξ $=-\sum_{i=1} P_i \ln P_i$ *i*=1 1 1 ═ *i*=1

 $p_i = 1$

 $\sum p_i = 1$ $H = -\sum$

Shannon entropy

N

 Interpretation: "*quantity of surprise one should feel upon reading the result of a measurement* ".

 \sum

1 $H = -\sum p_i \ln p_i$

N

 Example: a random variable takes values 0 or 1 with probabilities:

$$
p(0) = p
$$
, $p(1) = 1 - p$.

$$
H = -p \ln(p) - (1 - p) \ln(1 - p).
$$

 \Rightarrow p=0.5: Maximum **unpredictability.**

C. Shannon, "A Mathematical Theory of Communication", Bell System Technical Journal. 27 (3): 379–423 (1948). Bell System Technical Journal. 27 (4): 623–656 (1948).

cristina.masoller@upc.edu @cristinamasoll1

68

0 0.5 1 $0\frac{L}{0}$ 0.2 0.4 0.6 0.8 \pm

1

Transition laminar optical turbulence in a fiber laser (governing equations similar to hydrodynamics)

Control parameter: power of pump laser

E. G. Turitsyna et. al, Nat. Photonics 7, 783 (2013).

Permutation entropy: Shannon's entropy computed from ordinal probabilities

Entropy characterization of the transition

 $H=-\sum$

ᆖ

N

1

 $1.2₂$

 1.4

71 *A. Aragoneses et al., "Unveiling temporal correlations characteristic of a phase transition in the output intensity of a fiber laser", PRL 116, 033902 (2016).*

0.74

 0.8

 1.2

Pump power (W)

 1.4

1.6

Ordinal analysis of two-dimensional patterns

H. V. Ribeiro et. al, PLoS ONE 7, e40689 (2012).
The "spatial" permutation entropy was proposed to characterize 2D patterns, "textures" and images.

PHYSICAL REVIEW E 99, 013311 (2019)

Estimating physical properties from liquid crystal textures via machine learning and complexity-entropy methods

H. Y. D. Sigaki,¹ R. F. de Souza,¹ R. T. de Souza,^{1,2} R. S. Zola,^{1,2,*} and H. V. Ribeiro^{1,†} ¹Departamento de Física, Universidade Estadual de Maringá, Maringá, PR 87020-900, Brazil ²Departamento de Física, Universidade Tecnológica Federal do Paraná, Apucarana, PR 86812-460, Brazil

The variation of the spatial permutation entropy can give an early indicator of a vegetation transition.

High-resolution vegetation data from the Serengeti–Mara ecosystem in northern Tanzania and southern Kenya.

G. Tirabassi, C. Masoller, "Entropy-based early detection of critical transitions in spatial vegetation fields", PNAS 120, e2215667120 (2023).

We also analyzed **low-resolution** satellite (MODIS) vegetation data, combined with data from the Tropical Rainfall Measuring Mission (TRMM)

G. Tirabassi, C. Masoller, "Entropy-based early detection of critical transitions in spatial vegetation fields", PNAS 120, e2215667120 (2023).

Results

Spatial correlation Permutation entropy

(ordinal patterns defined by the values of 2x2 pixels)

$$
H = -\sum_{i=1}^{N} p_i \ln p_i
$$

$H = -\sum_{i=1}^{\infty} p_i \ln p_i$
 High-resolution data (transect 1
 spatial vegetation fields", PNAS 120, e2215667120 (2023).
 because the contract of the contra across transects) $\mathbf C$ \circ \circ \circ \circ _o 2800 3000 3400 3200 3600

Low-resolution data

 $\overline{\sum_i \sum_j w_{ij}}$

(transect 1; large variability

Rainfall [mm/year]

*w*_{ij}=1 if i, j first neighbors, else 0

 $\sum_i \sum_j w_{ij} (u_i - \bar{u}) (u_j - \bar{u})$

 $\sum_i (u_i - \bar{u})^2$

G. Tirabassi, C. Masoller, "Entropy-based early detection of critical transitions in

cristina.masoller@upc.edu @cristinamasoll1

High-resolution data

To gain insight: simulations of vegetation models

To gain insight: simulations of vegetation models

B) Local Positive Feedback model (two partial differential equations)

Diode laser experiments

Transition from low-coherence emission (stochastic quantum spontaneous emission) to coherent emission (laser turn-on stimulated emission).

Quick review on the interference of coherent waves

Speckle pattern: generated by random interference / scattering of coherent waves

Many applications. Two main types

- Extract information of the light (wavemeters)
- Extract information of the medium that generates the speckle (speckle-based spectroscopy)

But

Speckle is a drawback in laser-based illumination and imaging application.

Example of application of speckle analysis in our lab

Recovery of audio signals from silent videos of speckle patterns

C. Barcellona, D. Halpaap, P. Amil, A. Buscarino, L. Fortuna, J. Tiana, C. Masoller, "*Remote recovery of audio signals from videos of optical speckle patterns: a comparative study of signal recovery algorithms*", Opt. Exp. 28, 8716 (2020).

Analysis of Speckle Patterns using Permutation Entropy

Quantification of speckle contrast: $SC = \sigma / \langle I \rangle$

G. Tirabassi et al., "Permutation entropy-based characterization of speckle patterns generated by semiconductor laser light", APL Photonics 8, 126112 (2023).

Three features allow to differentiate the speckle patterns according to the type of medium that generated the speckles

G. Tirabassi et al., "Permutation entropy-based characterization of speckle patterns generated by semiconductor laser light", APL Photonics 8, 126112 (2023).

cristina.masoller@upc.edu @cristinamasoll1

84

Permutation Entropy analysis of EEG signals recorded from healthy subjects.

Eyes closed Eyes open

TABLE I. Description of the datasets used.

DTS1: Britbrain (Zaragoza) DTS2: Physionet

The Permutation Entropy increases in the eyes open state

C. Quintero-Quiroz et al., "Differentiating resting brain states using ordinal symbolic analysis", Chaos 28, 106307 (2018).

Spatial approach to compute the Permutation Entropy

At each time: data values of 64 channels \Rightarrow 62 ordinal patterns to calculate 6 probabilities.

B. R. R. Boaretto et al, "Spatial permutation entropy distinguishes resting brain states", Chaos, Solitons & Fractals 171, 113453 (2023).

Four approaches to calculate the permutation entropy

Results

J. Gancio, C. Masoller, G. Tirabassi, "Permutation entropy analysis of EEG signals for distinguishing eyes-open and eyes-closed brain states: Comparison of different approaches", Chaos 34, 043130 (2024).

Random forest classification of eyes open-eyes closed states

Using filtered data tends to improve the performance.

Performance is as good as that of other statistical measures.

J. Gancio, C. Masoller, G. Tirabassi, "Permutation entropy analysis of EEG signals for distinguishing eyes-open and eyes-closed brain states: Comparison of different approaches", Chaos 34, 043130 (2024).

Outline

- Complex systems and time series analysis
- **Ordinal analysis: Lasers and neurons and climate data**
- Hilbert analysis: Climate data
- Causal inference: Synthetic and climate data
- Regime transitions: Lasers, EEG and vegetation data
- Network analysis: Retina fundus images
- **Take home messages**

Analysis of retina fundus images

- **For the diagnosis of eye** diseases & follow up of treatments.
- Biometric identity identification.
- Opportunity to detect other diseases (alterations in retina network may reflect alterations in other arterial systems).

BE-OPTICAL

Advanced Biomedical Optical Imaging and Data Analysis

H2020-675512

Data and image analysis steps

- 45 high resolution images (3504 x 2336 pixels) 15 healthy subjects 15 glaucoma
	- 15 diabetic retinopathy
- **For every subject we had:**
	- ─fundus photography
	- ─manual segmentation done by an expert ophthalmologist.

Steps:

- 1. Pre-process and un-supervisely, segment the images.
- 2. Extract network.
- 3. Compare networks obtained from different images.
- 4. Classify the images.

https://www5.cs.fau.de/research/data/fundus-images/

Step 1: Pre-process and segmentation

We adapted an *unsupervised* algorithm, originally developed for segmenting images of cultured neuronal networks.

Manual segmentation

D. Santos-Sierra, I. Sendiña-Nadal, I. Leyva et al. Cytometry Part A. 87, 513 (2015).

94 P. Amil, F. Reyes-Manzano, L. Guzmán-Vargas, I. Sendiña-Nadal, C. Masoller, "*Network-based features for retinal fundus vessel structure analysis*", PLoS ONE 14, e0220132 (2019).

Step 2: extract the network (identification of the optical nerve, nodes and links and assign weights to the links).

Steps 3 and 4: Compare the networks extracted from different images and classify the images.

- ${p_{i,j}}$: distances between probability distributions that characterize the networks obtained from images i and j.
- We used nonlinear dimensionality reduction (*Isomap*) to reduce the set of 45x45 $\{p_{i,j}\}$ values to only two features.

Distance distribution to the central node in the *manual* segmentation

96

P. Amil et al, Network-based features for retinal fundus vessel structure analysis, PLoS ONE 14 e0220132 (2019).

Performance of network features in the *manual* **segmentation**

Distribution of weights along the shortest path to central node

Distribution of weighted degrees

P. Amil et al, Network-based features for retinal fundus vessel structure analysis, PLoS ONE 14 e0220132 (2019).

In the automated segmentation

P. Amil et al, Network-based features for retinal fundus vessel structure analysis, PLoS ONE 14 e0220132 (2019).

Outline

- Complex systems and time series analysis
- **Ordinal analysis: Lasers and neurons and climate data**
- Hilbert analysis: Climate data
- Causal inference: Synthetic and climate data
- Regime transitions: Lasers, EEG and vegetation data
- Network analysis: Retina fundus images
- Take home messages
- Data analysis methods allow us to uncover patterns and relationships in data, which characterize (and sometimes predict) the behavior of complex systems.
- Different methods provide *complementary* information.
- **Exen when the data does not meet the mathematical or** algorithmic requirements, the results can give useful info.
- "Surrogate" tests are needed to determine if the numerical values are statistically significant.
- Data analysis is an interdisciplinary field -many applications.

Holger Kantz: "*Every data set bears its own difficulties: data analysis is never routine*"

- J. Tiana-Alsina et. al, "*Comparing the dynamics of periodically forced lasers and neurons*", New J. of Phys. 21, 103039 (2019).
- M. Masoliver and C. Masoller, "*Neuronal coupling benefits the encoding of weak periodic signals in symbolic spike patterns*", Commun. Nonlinear Sci. Numer. Simulat. 88, 105023 (2020).
- D. A. Zappala et. al, "*Quantifying changes in spatial patterns of surface air temperature dynamics over several decades*", Earth Syst. Dynam. 9, 383–391 (2018).
- G. Tirabassi and C. Masoller, "*Entropy-based early detection of critical transitions in spatial vegetation fields*", PNAS 120, e2215667120 (2022).
- J. Gancio et. al, "Permutation entropy analysis of EEG signals for distinguishing eyes-open and eyes-closed brain states: Comparison of different approaches", Chaos 34, 043130 (2024).
- P. Amil et. al, "*Network-based features for retinal fundus vessel structure analysis*", PLoS ONE 14, e0220132 (2019).

Thank you for your attention!