### ΕΠΙΔΡΑΣΗ ΤΗΣ ΦΥΣΗΣ ΤΟΥ ΥΠΟΣΤΡΩΜΑΤΟΣ ΚΑΙ ΤΩΝ ΛΕΙΤΟΥΡΓΙΚΩΝ ΣΥΝΘΗΚΩΝ ΣΤΗ ΣΥΜΠΕΡΙΦΟΡΑ ΥΠΟΣΤΗΡΙΓΜΕΝΩΝ ΚΑΤΑΛΥΤΩΝ Ga2O3 ΓΙΑ ΤΗΝ ΑΝΤΙΔΡΑΣΗ ΟΞΕΙΔΩΤΙΚΗΣ ΑΦΥΔΡΟΓΟΝΩΣΗΣ ΤΟΥ C3H8 ΜΕ CO2

## Α. Φλώρου<sup>1</sup>, Γ. Μπάμπος<sup>2</sup>, Α. Κόκκα<sup>1</sup>, Π. Παναγιωτοπούλου<sup>1,\*</sup>

<sup>1</sup>Σχολή Χημικών Μηχανικών και Μηχανικών Περιβάλλοντος, Πολυτεχνείο Κρήτης, Χανιά, Ελλάδα <sup>2</sup>Τμήμα Χημικών Μηχανικών, Πανεπιστήμιο Πατρών, Πάτρα, Ελλάδα

(\*ppanagiotopoulou@tuc.gr)

#### ΠΕΡΙΛΗΨΗ

Στην παρούσα εργασία μελετάται η επίδραση της φύσης του υποστρώματος (Al<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, SiO<sub>2</sub>) και των λειτουργικών συνθηκών στη συμπεριφορά υποστηριγμένων καταλυτών Ga<sub>2</sub>O<sub>3</sub> (10 wt.%) για την αντίδραση οξειδωτικής αφυδρογόνωσης του προπανίου ( $C_3H_8$ ) με CO<sub>2</sub> (Oxidative Dehydrogenation of propane-CO<sub>2</sub>, ODP-CO<sub>2</sub>). Βρέθηκε ότι η μετατροπή του C<sub>3</sub>H<sub>8</sub> ( $X_{C3H8}$ ) αυξάνεται με αύξηση της θερμοκρασίας, με τον καταλύτη Ga2O3-Al2O3 ο οποίος χαρακτηρίζεται από μέτρια βασικότητα να παρουσιάζει βέλτιστη συμπεριφορά. Η απόδοση ως προς προπυλένιο (Y<sub>C3H6</sub>) αυξάνεται ακολουθώντας τη σειρά TiO<sub>2</sub><SiO<sub>2</sub><Al<sub>2</sub>O<sub>3</sub> για T<660 °C, ενώ σε υψηλότερες θερμοκρασίες η σειρά τροποποιείται ως εξής Al<sub>2</sub>O<sub>3</sub><TiO<sub>2</sub><SiO<sub>2</sub>. Η αύξηση του λόγου CO<sub>2</sub>:C<sub>3</sub>H<sub>8</sub> από 1 σε 10 δεν επηρεάζει σημαντικά την καταλυτική συμπεριφορά. Αντιθέτως, οι X<sub>C3H8</sub> και Y<sub>C3H6</sub> βελτιώνονται σημαντικά μειώνοντας τη ταχύτητα χώρου από 51600 σε 5160  $h^{-1}$ . Οι καταλύτες Ga<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> και Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> παρουσιάζουν ικανοποιητική σταθερότητα για ~30h αντίδρασης στους 660 και 710 °C. Αν και ο καταλύτης Ga<sub>2</sub>O<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub> παρουσίασε ικανοποιητική σταθερότητα στους 710 °C, βρέθηκε ότι απενεργοποιείται σταδιακά με το χρόνο στους 600 °C. Εικόνες SEM που ελήφθησαν σε χρησιμοποιημένους καταλύτες έδειξαν υψηλότερη εναπόθεση άνθρακα όταν το Ga2O3 διασπείρεται στο SiO2. Τα αποτελέσματα υποδεικνύουν ότι η κατάλληλη επιλογή καταλύτη και λειτουργικών συνθηκών μπορεί να οδηγήσει σε υψηλές και σταθερές αποδόσεις  $C_3H_6$  μέσω της αντίδρασης ODP-CO<sub>2</sub>.

**ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ:** Οξειδωτική αφυδρογόνωση  $C_3H_8$  με  $CO_2$ ,  $C_3H_6$ ,  $Ga_2O_3$ - $M_xO_y$ ,  $CO_2$ : $C_3H_8$ , ταχύτητα χώρου

# ΕΙΣΑΓΩΓΗ

To προπυλένιο (C<sub>3</sub>H<sub>6</sub>) αποτελεί βασικό δομικό συστατικό για τη βιομηχανική παραγωγή πολυάριθμων χημικών ενώσεων, με την παγκόσμια ζήτησή του να αυξάνεται συνεχώς <sup>[1]</sup>. Η οξειδωτική αφυδρογόνωση του προπανίου (C<sub>3</sub>H<sub>8</sub>) με CO<sub>2</sub> παρουσιάζει ιδιαίτερο ενδιαφέρον ως εναλλακτική μέθοδος για την παραγωγή C<sub>3</sub>H<sub>6</sub>. Η χρήση του CO<sub>2</sub> στη διεργασία, εκτός από αυτή του ήπιου οξειδωτικού, συμβάλλει και στην άμεση αξιοποίησή του με στόχο τη μείωση των αερίων του θερμοκηπίου και κατ' επέκταση τον μετριασμό της κλιματικής αλλαγής <sup>[2,3]</sup>. Βασικό πλεονέκτημα της αντίδρασης ODP-CO<sub>2</sub> είναι η συμμετοχή του CO<sub>2</sub> τόσο στη μετατροπή του C<sub>3</sub>H<sub>8</sub> σε C<sub>3</sub>H<sub>6</sub> όσο και στην κατανάλωση του H<sub>2</sub> μέσω της αντίστροφης αντίδρασης μετατόπισης του CO με ατμό (RWGS) οδηγώντας σε υψηλές αποδόσεις C<sub>3</sub>H<sub>6</sub><sup>[2,3]</sup>. Επιπλέον, το CO<sub>2</sub> μπορεί να απομακρύνει τον πιθανό εναποτιθέμενο άνθρακα από την καταλυτική επιφάνεια μέσω της αντίστροφης αντίδρασης Boudouard, εμποδίζοντας έτσι την απενεργοποίηση του καταλύτη.

Ανάμεσα στους καταλύτες που έχουν αναπτυχθεί για την αντίδραση ODP-CO<sub>2</sub>, οι υποστηριγμένοι καταλύτες Ga<sub>2</sub>O<sub>3</sub> παρουσιάζουν υψηλή ενεργότητα και απόδοση ως προς C<sub>3</sub>H<sub>6</sub>, οι οποίες επηρεάζονται σημαντικά από τη φύση του υποστρώματος <sup>[4]</sup>. Ανάλογα με τις φυσικοχημικές ιδιότητες του καταλύτη και τις λειτουργικές συνθήκες αντίδρασης, οι παράπλευρες αντιδράσεις υδρογονόλυσης του C<sub>3</sub>H<sub>8</sub> και διάσπασης των C<sub>3</sub>H<sub>8</sub> και C<sub>3</sub>H<sub>6</sub> είναι πιθανό να λαμβάνουν χώρα ταυτόχρονα οδηγώντας σε χαμηλές αποδόσεις και εναπόθεση άνθρακα. Επομένως, η ανάπτυξη ενεργών, εκλεκτικών και σταθερών καταλυτικών υλικών καθώς και η βελτιστοποίηση των λειτουργικών παραμέτρων κρίνονται απαραίτητες για την επίτευξη υψηλών αποδόσεων C<sub>3</sub>H<sub>6</sub> μέσω της αντίδρασης ODP- $CO_2^{[4]}$ .

Στην παρούσα μελέτη, διερευνάται η επίδραση της φύσης του υποστρώματος (Al<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub>, SiO<sub>2</sub>) και των συνθηκών αντίδρασης (θερμοκρασία, ταχύτητα χώρου, λόγου CO<sub>2</sub>:C<sub>3</sub>H<sub>8</sub>) στην ενεργότητα, εκλεκτικότητα και τη σταθερότητα υποστηριγμένων καταλυτών Ga2O3 (10 wt.%) για την αντίδραση ODP-CO<sub>2</sub>. Με σκοπό να προσδιοριστούν οι φυσικοχημικές ιδιότητες που επηρεάζουν την καταλυτική συμπεριφορά, οι καταλύτες χαρακτηρίστηκαν με τις τεχνικές B.E.T, XRD και CO<sub>2</sub>-TPD. Οι χρησιμοποιημένοι καταλύτες μετά από τα πειράματα σταθερότητας χαρακτηρίστηκαν με τις τεχνικές ΤΕΜ και SEM, προκειμένου να διερευνηθεί ο πιθανός σχηματισμός άνθρακα στην επιφάνεια τους ή/και πιθανές αλλαγές στα μορφολογικά τους χαρακτηριστικά που λαμβάνουν χώρα υπό συνθήκες αντίδρασης.

#### ΜΕΘΟΔΟΛΟΓΙΑ

Οι καταλύτες 10%Ga<sub>2</sub>O<sub>3</sub>-M<sub>x</sub>O<sub>y</sub> παρασκευάστηκαν με τη μέθοδο του υγρού εμποτισμού χρησιμοποιώντας σαν πρόδρομη ένωση άλας μετάλλου (Ga(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O) και εμπορικούς φορείς Al<sub>2</sub>O<sub>3</sub>, TiO<sub>2</sub> και SiO<sub>2</sub>. Μετά τον εμποτισμό ακολούθησε ξήρανση των στερεών στους 120 °C για 12 h και πύρωση στους 600 °C για 3 h. Ο χαρακτηρισμός των καταλυτών πραγματοποιήθηκε με τις τεχνικές φυσικής ρόφησης αζώτου σε θερμοκρασία υγρού αζώτου (BET), περίθλασης ακτίνων Χ (XRD), θερμοπρογραμματιζόμενης εκρόφησης του CO<sub>2</sub> (CO<sub>2</sub>-TPD), ηλεκτρονικής μικροσκοπίας διέλευσης (TEM) και ηλεκτρονικής μικροσκοπίας σάρωσης (SEM). Η καταλυτική συμπεριφορά μελετήθηκε στο θερμοκρασιακό εύρος 500-750 °C, χρησιμοποιώντας σύσταση τροφοδοσίας αποτελούμενη από 5%C<sub>3</sub>H<sub>8</sub> +25%CO<sub>2</sub>/He και συνολική ροή 50 cm<sup>3</sup>/min. Πριν από κάθε πείραμα ο καταλύτης υφίσταται προκατεργασία με θέρμανση στους 450 °C για 1 h υπό ροή He.

#### ΑΠΟΤΕΛΕΣΜΑΤΑ ΚΑΙ ΣΥΖΗΤΗΣΗ

Τα αποτελέσματα από τις μετρήσεις BET έδειξαν ότι η ειδική επιφάνεια (Specific Surface Area, SSA) των καταλυτών Ga<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub>, Ga<sub>2</sub>O<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub> και Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> είναι ίση με 47.9, 73.1 και 183.3 m<sup>2</sup> g<sup>-1</sup>, αντίστοιχα. Στα περιθλασιογράμματα XRD που ελήφθησαν για τους ίδιους καταλύτες εντοπίστηκαν

μόνο οι κορυφές που αποδίδονται σε TiO<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub> ή SiO<sub>2</sub>, υποδεικνύοντας ότι σε όλες τις περιπτώσεις τα σωματίδια του Ga<sub>2</sub>O<sub>3</sub> είναι καλά διασκορπισμένα στην επιφάνεια του υποστρώματος.

Τα αποτελέσματα των πειραμάτων CO2-TPD που ελήφθησαν για τους καταλύτες Ga2O3-SiO2, Ga2O3-Al2O3 Ga<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> παρουσιάζονται στο και Σχήμα 1. Παρατηρείται ότι οι καταλύτες παρουσιάζουν μια κορυφή εκρόφησης του CO2 σε χαμηλές θερμοκρασίες (LT) (<250 °C), η οποία αποδίδεται σε ασθενείς βασικές θέσεις, καθώς και δύο ή περισσότερες κορυφές σε υψηλές θερμοκρασίες (HT) (450-750 °C), οι οποίες αποδίδονται σε μέτριες ή ισχυρές βασικές θέσεις. Τα αποτελέσματα έδειξαν ότι ο αριθμός και η ισχύς των ασθενών βασικών θέσεων αυξάνεται ακολουθώντας την σειρά SiO<sub>2</sub><TiO<sub>2</sub><Al<sub>2</sub>O<sub>3</sub>, ενώ ο αριθμός και η ισχύς των μέτριων ή/και ισχυρών βασικών θέσεων αυξάνεται ακολουθώντας την σειρά SiO<sub>2</sub><Al<sub>2</sub>O<sub>3</sub><TiO<sub>2</sub>. Η συνολική ποσότητα CO<sub>2</sub> που εκροφάται από τους καταλύτες Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>, Ga<sub>2</sub>O<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub> Σχήμα και Ga<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> βρέθηκε να είναι ίση με 0.024, 0.546 και υποστηριγμένων καταλυτών Ga<sub>2</sub>O<sub>3</sub>.



0.582 μmol·m<sup>-2</sup>, αντίστοιχα, υποδεικνύοντας ότι η συνολική επιφανειακή βασικότητα των καταλυτών αυξάνεται ακολουθώντας τη σειρά SiO<sub>2</sub><Al<sub>2</sub>O<sub>3</sub><TiO<sub>2</sub>.

Ta χαρακτηριστικά ρόφησης/εκρόφησης του CO<sub>2</sub> από την επιφάνεια των καταλυτών μελετήθηκαν με την τεχνική της υπέρυθρης φασματοσκοπίας (FTIR) και τα αποτελέσματα παρουσιάζονται στο Σχήμα 2. Το φάσμα που καταγράφηκε στους 25 °C για τον καταλύτη Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> (Σχ. 2A) χαρακτηρίζεται από μόνο μία ασθενή κορυφή στα 1629 cm<sup>-1</sup>, η οποία αποδίδεται σε διττανθρακικά είδη ροφημένα στην επιφάνεια του Ga<sub>2</sub>O<sub>3</sub>. Αντίθετα, τα φάσματα που ελήφθησαν στους 25 °C για τον καταλύτη Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> (Σχ. 2A) χαρακτηρίζεται από μόνο μία ασθενή κορυφή στα 1629 cm<sup>-1</sup>, η οποία αποδίδεται σε διττανθρακικά είδη ροφημένα στην επιφάνεια του Ga<sub>2</sub>O<sub>3</sub>. Αντίθετα, τα φάσματα που ελήφθησαν στους 25 °C για τους καταλύτες Ga<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> (Σχ. 1B) και Ga<sub>2</sub>O<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub> (Σχ. 1C) χαρακτηρίζονται από αρκετές κορυφές στην περιοχή 1700-1100 cm<sup>-1</sup>. Συνοπτικά, τα ροφημένα είδη που ανιχνευθήκαν αποδίδονται σε διττανθρακικά (1649-1642 και 1416-1402 cm<sup>-1</sup>), μονοδοντικά και διδοντικά (1580-1557, 1538-1521, 1361 και 1320 cm<sup>-1</sup>) ανθρακικά είδη ροφημένα στην επιφάνεια του Ga<sub>2</sub>O<sub>3</sub> ή/και του M<sub>x</sub>O<sub>y</sub>. Σε όλες τις περιπτώσεις, αύξηση της θερμοκρασίας οδηγεί σε σταδιακή εκρόφηση των ροφημένων ειδών από την καταλυτική επιφάνεια. Η εκρόφηση πραγματοποιείται σε σημαντικά χαμηλότερες θερμοκρασίες για τον καταλύτη Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> (T>150 °C) από ότι για τον Ga<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> (T>450 °C), ενώ για τον Ga<sub>2</sub>O<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub> τα ροφημένα είδη απομακρύνονται σε ενδιάμεσες θερμοκρασίες (T>300 °C). Τα αποτελέσματα υποδεικνύουν ότι η ισχύς ρόφησης του CO<sub>2</sub> αυξάνεται ακολουθώντας τη σειρά SiO<sub>2</sub><Al<sub>2</sub>O<sub>3</sub><TiO<sub>2</sub> σε πλήρη συμφωνία με τα πειράματα CO<sub>2</sub>-TPD.



**Σχήμα 2:** Φάσματα FTIR που ελήφθησαν έπειτα από αλληλεπίδρασή των καταλυτών (A) Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub>, (B) Ga<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> και (C) Ga<sub>2</sub>O<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub> με 5%CO<sub>2</sub>/He στους 25 °C για 30 min και σταδιακή αύξηση της θερμοκρασίας στους 450 °C υπό ροή He.

Τα αποτελέσματα από την επίδραση της φύσης του υποστρώματος στη συμπεριφορά υποστηριγμένων καταλυτών Ga<sub>2</sub>O<sub>3</sub> συνοψίζονται στο Σχήμα 3A, στο οποίο παρουσιάζεται η μετατροπή του προπανίου ( $X_{C3H8}$ ) συναρτήσει της θερμοκρασίας αντίδρασης. Βρέθηκε ότι ο καταλύτης Ga<sub>2</sub>O<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub> είναι ο πιο ενεργός, εμφανίζοντας μετρήσιμες μετατροπές προπανίου σε θερμοκρασίες υψηλότερες από τους 510 °C και επιτυγχάνοντας  $X_{C3H8}$ =80% στους 745 °C. Αν και οι καταλύτες Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> και Ga<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> παρουσιάζουν σημαντικά μικρότερη ενεργότητα κάτω από τους 700 °C, η  $X_{C3H8}$  στους 745 °C είναι όμοια με αυτή του καταλύτη Ga<sub>2</sub>O<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub>. Η απόδοση ως προς τη παραγωγή προπυλενίου ( $Y_{C3H6}$ ) επηρεάζεται σημαντικά από τη φύση του υποστρώματος

και εξαρτάται έντονα από τη θερμοκρασία αντίδρασης (Σχ. 3Β). Συγκεκριμένα, σε θερμοκρασίες χαμηλότερες των 650 °C το Y<sub>C3H6</sub> βρέθηκε να αυξάνεται ακολουθώντας τη σειρά TiO<sub>2</sub><SiO<sub>2</sub><Al<sub>2</sub>O<sub>3</sub>, ενώ υψηλότερες θερμοκρασίες είχαν αρνητική επίδραση στο Y<sub>C3H6</sub> για τον καταλύτη Ga<sub>2</sub>O<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub>.



**Σχήμα 3:** (A) Μετατροπή C<sub>3</sub>H<sub>8</sub> και (B) απόδοση ως προς C<sub>3</sub>H<sub>6</sub> συναρτήσει της θερμοκρασίας αντίδρασης για υποστηριγμένους καταλύτες Ga<sub>2</sub>O<sub>3</sub>.

Εκτός από το C<sub>3</sub>H<sub>6</sub>, τα προϊόντα που ανιχνεύθηκαν υπό συνθήκες αντίδρασης σε όλους τους καταλύτες ήταν τα CO, CH<sub>4</sub>, C<sub>2</sub>H<sub>4</sub> και ίχνη C<sub>2</sub>H<sub>6</sub>. Τυπικά αποτελέσματα από την κατανομή των

προϊόντων με τη θερμοκρασία παρουσιάζονται στο Σχήμα 4 για τον καταλύτη Ga<sub>2</sub>O<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub>. Η αύξηση της θερμοκρασίας στους 745 °C οδηγεί σε μείωση της εκλεκτικότητας ως προς C<sub>3</sub>H<sub>6</sub> (S<sub>C3H6</sub>), ενώ η εκλεκτικότητα ως προς CO (Sco) παραμένει πρακτικά σταθερή σε όλο το εξεταζόμενο θερμοκρασιακό εύρος. Η παραγωγή CO και C<sub>3</sub>H<sub>6</sub> υποδεικνύει ότι λαμβάνει χώρα η επιθυμητή αντίδραση ODP-CO2, ενώ μέρος του παραγόμενου CO πιθανόν να οφείλεται στην αντίδραση RWGS ή/και στην αντίστροφη αντίδραση Boudouard. Η μείωση του S<sub>C3H6</sub> και η ταυτόχρονη αύξηση των εκλεκτικοτήτων ως προς CH<sub>4</sub> (S<sub>CH4</sub>) και C<sub>2</sub>H<sub>4</sub> (S<sub>C2H4</sub>) με αύξηση της θερμοκρασίας αντίδρασης υποδεικνύει ότι σε οι υψηλές θερμοκρασίες λαμβάνουν χώρα



**Σχήμα 4:** Εκλεκτικότητες ως προς τα προϊόντα της αντίδρασης συναρτήσει της θερμοκρασίας για τον καταλύτη 10%Ga<sub>2</sub>O<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub>.

ανεπιθύμητες αντιδράσεις υδρογονόλυσης του  $C_3H_8$  και διάσπασης του  $C_3H_8$  ή/και του  $C_3H_6$ .

Η επίδραση του χρόνου αντίδρασης στη συμπεριφορά του καταλύτη Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> μελετήθηκε στους 660 και 710 °C (Σχ. 5). Οι διακεκομμένες γραμμές αντιστοιχούν σε διακοπή του πειράματος κατά τη διάρκεια της νύχτας, όπου ο καταλύτης παραμένει υπό ροή He. Βρέθηκε ότι η  $X_{C3H8}$  και το  $Y_{C3H6}$ στους 660 °C κυμαίνονται μεταξύ 29-34% και 17-19%, αντίστοιχα, κατά τη διάρκεια των πρώτων 5h αντίδρασης (Σχ. 5A). Αν και τα  $X_{C3H8}$  και  $Y_{C3H6}$  μειώνονται ελαφρώς έπειτα από τη διακοπή του πειράματος, βρέθηκε ότι ανακτούν τις αρχικές τους τιμές με την πάροδο του χρόνου. Η ίδια τάση παρατηρείται με περαιτέρω αύξηση του χρόνου αντίδρασης, η οποία, ωστόσο εξομαλύνεται μετά τις 17h, οδηγώντας σε σταθεροποίηση των  $X_{C3H8}$  και  $Y_{C3H6}$  στο 26 και 14.5%, αντίστοιχα, μετά από ~30h αντίδρασης. Όσον αφορά τις εκλεκτικότητες ως προς τα προϊόντα της αντίδρασης βρέθηκε ότι η  $S_{C3H6}$  είναι πρακτικά σταθερή, ενώ η  $S_{CO}$  μειώνεται ελαφρώς με το χρόνο (Σχ. 5B). Από την άλλη πλευρά, τα  $S_{C2H4}$  και  $S_{CH4}$  αυξάνονται σταδιακά με το χρόνο αντίδρασης.



**Σχήμα 5:** Πειράματα σταθερότητας για τον καταλύτη 10%Ga<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> στους (A, B) 660 °C και (C, D) 710 °C υπό συνθήκες οξειδωτικής αφυδρογόνωσης του C<sub>3</sub>H<sub>8</sub> με CO<sub>2</sub>. (A, C) Διαγράμματα μετατροπής C<sub>3</sub>H<sub>8</sub> και απόδοσης ως προς C<sub>3</sub>H<sub>6</sub> και (B, D) εκλεκτικότητες ως προς τα προϊόντα της αντίδρασης.

Από το πείραμα σταθερότητας στους 710 °C (Σχ. 5C), βρέθηκε ότι η  $X_{C3H8}$  παρουσιάζει την ίδια τάση με αυτή του πειράματος στους 660 °C, ενώ το  $Y_{C3H6}$  παραμένει σταθερό με το χρόνο. Όπως αναμενόταν, τόσο η  $X_{C3H8}$  όσο και το  $Y_{C3H6}$  είναι υψηλότερα στους 710 °C. Το ίδιο συμβαίνει και για τα  $S_{C2H4}$  και  $S_{CH4}$ , ενώ τα  $S_{C3H6}$  και  $S_{C0}$  παρουσιάζουν χαμηλότερες τιμές σε σύγκριση με εκείνες στους 660 °C (Σχ. 5D). Τα αποτελέσματα δείχνουν ότι η παρατεταμένη έκθεση του καταλύτη στο μίγμα αντίδρασης ή/και η αύξηση της θερμοκρασίας της αντίδρασης οδηγούν σε ελαφρά αναστολή της αντίδρασης ODP-CO<sub>2</sub> ευνοώντας τις ανεπιθύμητες αντιδράσεις υδρογονόλυσης του C<sub>3</sub>H<sub>8</sub> ή/και του C<sub>3</sub>H<sub>6</sub>.

Αντίστοιχη μελέτη πραγματοποιήθηκε για τον καταλύτη Ga<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> και τα αποτελέσματα έδειξαν ότι ο καταλύτης παρουσιάζει επαρκή σταθερότητα με το χρόνο στους 660 και στους 710 °C. Όσον αφορά τον καταλύτη Ga<sub>2</sub>O<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub> βρέθηκε ότι τόσο η  $X_{C3H8}$  όσο και το  $Y_{C3H6}$  παραμένουν σταθερά για 30h αντίδρασης στους 710 °C. Αντίθετα, η αλληλεπίδραση του καταλύτη Ga<sub>2</sub>O<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub> με το μίγμα της αντίδρασης στους 600 °C οδηγεί σε σταδιακή απενεργοποίηση του. Η μείωση της καταλυτικής ενεργότητας συνοδεύεται από μείωση του  $S_{C3H6}$  και αύξηση των  $S_{CH4}$  και  $S_{C2H4}$  με το χρόνο φανερώνοντας ότι η απενεργοποίηση οφείλεται στην εναπόθεση άνθρακα πιθανώς μέσω των αντιδράσεων διάσπασης των C<sub>3</sub>H<sub>8</sub> ή/και C<sub>3</sub>H<sub>6</sub>. Εικόνες TEM και SEM που ελήφθησαν από τους καταλύτες έπειτα από τα πειράματα σταθερότητας έδειξαν ότι τα μορφολογικά τους χαρακτηριστικά παραμένουν ίδια με αυτά ων φρέσκων δειγμάτων ενώ μετρήσεις SEM/EDS έδειξαν υψηλότερη εναπόθεση άνθρακα όταν το Ga<sub>2</sub>O<sub>3</sub> διασπείρεται στο SiO<sub>2</sub>.

Τα αποτελέσματα από την επίδραση της ταχύτητας χώρου (GHSV) στη συμπεριφορά του καταλύτη  $Ga_2O_3$ - $Al_2O_3$  παρουσιάζονται στο Σχήμα 6. Παρατηρείται ότι η μείωση του GHSV οδηγεί σε βελτίωση τόσο της  $X_{C3H8}$  όσο και του  $Y_{C3H6}$ , γεγονός που οφείλεται στον υψηλότερο χρόνο παραμονής. Ποιοτικά όμοια αποτελέσματα παρατηρήθηκαν και για τους άλλους δύο καταλύτες.



**Σχήμα 6**. Επίδραση του GHSV στη (Α) μετατροπή του C<sub>3</sub>H<sub>8</sub> και (Β) απόδοση ως προς C<sub>3</sub>H<sub>6</sub> για τον καταλύτη 10%Ga<sub>2</sub>O<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub>.

Τέλος, μελετήθηκε η επίδραση του λόγου  $CO_2:C_3H_8$  στη συμπεριφορά των υποστηριγμένων καταλυτών  $Ga_2O_3$ . Τυπικά αποτελέσματα παρουσιάζονται στο Σχήμα 7 για τον καταλύτη  $Ga_2O_3$ -  $Al_2O_3$ . Σύμφωνα με τα αποτελέσματα, και στις τρεις περιπτώσεις, η αύξηση του λόγου από 1 σε 10 βρέθηκε να μην επηρεάζει σημαντικά την καταλυτική συμπεριφορά.



**Σχήμα 7:** Επίδραση του λόγου CO<sub>2</sub>:C<sub>3</sub>H<sub>8</sub> στη (A) μετατροπή του C<sub>3</sub>H<sub>8</sub> και (B) την απόδοση ως προς C<sub>3</sub>H<sub>6</sub> για τον καταλύτη 10%Ga<sub>2</sub>O<sub>3</sub>-Al<sub>2</sub>O<sub>3</sub>.

#### ΕΥΧΑΡΙΣΤΙΕΣ

ΕΛΙΔΕΚ. Το ερευνητικό έργο υποστηρίχθηκε από το Ελληνικό Ίδρυμα Έρευνας και και ερευνας και δ. Καινοτομίας (ΕΛ.ΙΔ.Ε.Κ) στο πλαίσιο της Δράσης «2<sup>η</sup> Προκήρυξη ερευνητικών έργων ΕΛ.ΙΔ.Ε.Κ για την ενίσχυση των μελών ΔΕΠ και Ερευνητών/τριών» (Αριθμός Έργου: 3367).

#### ΒΙΒΛΙΟΓΡΑΦΙΑ

- Wang Z., He Z., Li L., Yang S., He M., Sun Y., Wang K., Chen J., Liu Z. (2022). *Rare Met.*, 41(7), 2129-2152.
  Liu L., Li H., Zhang Y. (2007). *Catal. Commun.* 2007, *8*, 565–570.
- [3] Atanga, M.A., Rezaei, M., Jawad, A., Fitch, M., Rownaghi, A.A. (2018). *Appl Catal B.*, 220, 429–445.
- [4] Florou A., Bampos G., Natsi P.D., Kokka A., Panagiotopoulou P. (2024). Nanomaterials, 14 (1), 86.