CO2 HYDROGENATION OVER CERIA-BASED TRANSITION METAL NANOCATALYSTS

S. Stefa¹, G. Varvoutis^{2,3}, M. Lykaki⁴, V. Binas^{1,5}, G.E. Marnellos^{6,7}, M. Konsolakis^{4,*}

¹Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas (FORTH-IESL), Heraklion, Greece

²Department of Mechanical Engineering, University of Western Macedonia, Kozani, Greece

³Cluster of Bioeconomy and Environment of Western Macedonia, Kozani, Greece ⁴School of Production Engineering & Management, Technical University of Crete, Chania, Greece

⁵Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece ⁶Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece

⁷Chemical Process and Energy Resources Institute, Centre for Research & Technology Hellas, Thermi, Greece

(*<u>mkonsolakis@tuc.qr</u>)

ABSTRACT

The hydrogenation of CO₂ to value-added products by means of green H₂ has gained increasing attention for mitigating CO₂ emissions and utilizing the excess power of renewable energy sources. Ceria-based transition metal catalysts have received significant attention due to their intrinsic properties in conjunction with their lower cost as compared to noble metal-based catalysts. In the present work, CO₂ hydrogenation is studied over a series of M/CeO₂-NR catalysts (M/Ce = 0.25 atomic ratio), employing first raw 3d transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn) as the active metal phase and rod-shaped ceria as support. The as-prepared materials were thoroughly characterized by various complementary characterization techniques, involving BET, XRD, SEM/EDS, TEM and TPR, in order to gain insight into structure-performance relationships. According to the catalytic results, the CO₂ conversion performance of M/CeO₂-NR catalysts is strongly dependent on the metal entity, following the trend: Ni > Co > Cu > Fe > Zn > Cr ≈ Ti ≈ V ≈ Mn. In particular, Ni/CeO₂-NR exhibits by far the best performance, offering ~90% conversion at 300 °C. Moreover, all the M/CeO₂-NR systems, except those of Ni and Co, are mainly selective to CO. Both the CO₂ hydrogenation activity and selectivity can be closely related to the intrinsic features of each metal in relation to its ability to activate CO₂ and dissociate H₂.

KEYWORDS: CO₂ hydrogenation, transition metals, ceria nanorods

Acknowledgements: This research has been co-financed by the European Union NextGenerationEU under the call RESEARCH – CREATE – INNOVATE 16971 Recovery and Resilience Facility (project code: TAEDK-06169).