SO2 RESISTANT AND HYDROTHERMALLY STABLE HIGH SILICA Pd/CHA FOR CH4 OXIDATION

T. Mon¹, Z. Ran², D. Assanis², E. A. Kyriakidou^{1,*}

¹Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, NY 14260, USA

²Department of Mechanical Engineering, Stony Brook University, NY 11794, USA

(*<u>elenikyr@buffalo.edu</u>)

ABSTRACT

Methane (CH₄) has a 25-fold greater global warming potential than CO₂, limiting its use as an alternative fuel in natural gas vehicles (NGVs) due to CH₄ slip in the exhaust. Conventional Pd/Al₂O₃ catalysts used for CH₄ abatement in aftertreatment systems deactivate after hydrothermal aging (HTA) and SO₂ poisoning ^[1]. A promising alternative are high silica chabazite (CHA) zeolite supports that have a hydrophobic framework and are SO_2 resistant. Herein, high silica Pd/CHA (Si/Al = 156) are synthesized and evaluated as powdered catalysts and washcoated monoliths before and after HTA and SO₂ poisoning ^[2]. The CH₄ oxidation performance of powdered (100 mg, 250-500 μ m, WHSV = 200 L g_{cat}^{-1} h⁻¹) and minicore (GHSV = 20,000 h⁻¹) catalysts was evaluated under stoic, moderate lean, and lean conditions. The samples were pretreated in 20% O₂/Ar at 500 °C/20 min and were aged under stoic conditions (650 °C/ 1 h) followed by evaluation of their CH₄ oxidation performance. The process of aging and evaluating the catalysts was repeated for mod. lean and lean conditions. HTA was performed under 10% H₂O and 20% O₂/Ar at 650 °C/ 12 h after which the CH₄ oxidation performance of the catalysts under all conditions was evaluated. The SO₂ tolerance (20 ppm SO₂/Ar, 300 °C/5 h) of HTA washcoated minicores was also evaluated ^[3]. Increasing the Pd loading from 1 to 2 wt.% resulted in lowering the 50 and 90% CH₄ conversion temperatures (T_{50}/T_{90}) to 346/373 °C (stoic), 349/386 °C (mod. lean), and 335/359 °C (lean). HTA 2 wt.% Pd/CHA powder catalyst resulted in higher T_{50,90}'s under stoic (352/397 °C), mod. lean (370/412 °C), and lean (353/390 °C). 2 wt.% Pd/CHA (156) washcoated minicores achieved the lowest T_{50,90}'s under mod. lean conditions (322/353 °C) compared to lean (322/357 °C) and stoic (348/384 °C). After HTA, deactivation was observed; however, the $T_{50.90}$'s remained below the exhaust temperatures of stoic (364/404 °C), moderate lean (337/373 °C), and lean (350/394 °C) conditions. No significant performance changes were observed over 2 wt.% Pd/CHA (156) between HTA and SO₂ poisoning indicating a hydrothermally stable and SO₂ resistant catalyst.

KEYWORDS: palladium, zeolites, methane oxidation, sulfur, monolith

REFERENCES

- [1] Chen, HY, Lu, J, Fedeyko, JM, & Raj, A. (2022). Appl. Catal. A: Gen., 633, 118534.
- [2] Prodinger S, Derewinski MA, Wang Y, Washton NM, Walter ED, Szanyi J, Gao F, Wang Y, Peden CH. (2017). *Appl. Catal. B: Environ.*, 201, 461-9.
- [3] Rappé KG, DiMaggio C, Pihl JA, Theis JR, Oh SH, Fisher GB, Parks J, Easterling VG, Yang M, Stewart ML, Howden KC. (2019). Emiss. Control Sci. and Technol., 5, 183-214.