
DISTINCT FORMULATIONS AND SELECTIVE TUNING OF PREVAILING SPECIES IN ReO_x/ZrO₂ CATALYSTS: AN IN SITU MOLECULAR SPECTROCOPIC VISTA

Th. Kentri^{1,2}, C. Andriopoulou^{1,2}, S. Boghosian^{1,2,*} ¹Department of Chemical Enginnering, University of Patras, Patras, Greece ²FORTH/ICE-HT, Patras, Greece (*bogosian@chemeng.upatras.gr)

ABSTRACT

In situ Raman and FTIR spectra complemented by in situ Raman/¹⁸O isotope labelling are exploited for deciphering the structural properties and configurations of the (ReO_x)_n phase dispersed on monoclinic ZrO₂ at temperatures of 120 - 400 °C under oxidative dehydration conditions and coverages in the range of $0.71 - 3.7 \text{ Re/nm}^2$. The dispersed (ReO_x)_n phase is heterogeneous, consisting of three distinct structural units: a) Species – I with mono-oxo termination O=Re(–O–Zr)m (Re=O mode at 993 – 1005 cm⁻¹); b) Species – IIa with di-oxo termination (O=)₂Re(-O-Zr)_{m-1} (symmetric stretching mode at 987 - 998 cm-1); and c) Species - IIb with di-oxo termination $(O=)_2 \text{Re}(-O-\text{Zr})_u$ (symmetric stretching mode at 982 – 991 cm⁻¹); all terminal stretching modes undergo blue shifts with increasing coverage. With increasing temperature, a reversible temperature-dependent Species – IIa \rightarrow Species – I transformation is evidenced (see Figure). At low coverages, below 1 Re/nm², isolated species prevail; at 400 °C the mono-oxo O=Re(-O-Zr)_m Species - I is the majority species, the di-oxo Species - Ila occurs in significant proportion and di-oxo Species - IIb is in minority. At coverage \geq 1.3 Re/nm², at 400°C the di-oxo Species – IIa prevails clearly over mono-oxo Species – I and. Below 80 °C and at a low coverage of 0.71 Re/nm², the occurrence of a fourth structural unit, Species - III taking on a tri-oxo configuration (symmetric stretching mode at 974 cm⁻¹) is evidenced. All temperature-dependent structural and configurational transformations are fully reversible and interpreted by mechanisms at the molecular level. ^[1]

KEYWORDS: supported transition metal oxides, rhenia, molecular structure, Raman, FTIR

REFERENCES

[1] Andriopoulou C., Kentri Th., Boghosian S. (2024). Dalton Trans, 53, https://doi:10.1039/D3DT04270G.