REMARKABLE LOW-TEMPERATURE CO₂ METHANATION ACTIVITY OF Ni/CeO₂-NANOROD CATALYSTS WITH TUNABLE PARTICLE SIZE

E. Mandela^{*1}, G.Varvoutis¹, A.A. Dabbawala^{2,3}, A.G.S. Hussien^{2,3}, M. Lykaki⁴, A. Lampropoulos¹, K. Polychronopoulou^{2,3}, G.E. Marnellos^{5,6}, M. Konsolakis⁴

¹ Department of Mechanical Engineering, University of Western Macedonia, Kozani, Greece

²Department of Chemical Engineering, University College London, London, United Kingdom

³Department of Mechanical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates

⁴School of Production Engineering and Management, Technical University of Crete, Chania, Greece ⁵Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece ⁶Chemical Process and Energy Resources Institute, CERTH, Thessaloniki, Greece

(*<u>e.mandela@uowm.qr</u>)

ABSTRACT

During the last decades, CO_2 hydrogenation towards methane stands out as a promising strategy, with the dual purpose of utilizing captured industrial CO2 emissions and excess RES-powered electrolytic H_2 . Consequently, the produced synthetic CH_4 is considered as a carbon neutral energy carrier, effectively harnessing the intermittence of renewable energy sources, such as solar and wind^[1]. Among the most explored catalysts for this process, nickel-ceria systems are characterized by many advantageous characteristics, such as their enhanced redox properties, abundant oxygen vacancies, thermal stability and are easily tuned, while their low-cost compared to noble metal based catalysts facilitates their further scalability^[2]. Recently, it has been demonstrated that nanostructured ceria, namely ceria nanorods, exhibit superior catalytic behavior due to their exposed crystal facets that comprise various beneficial redox and electronic properties^[3]. On the other hand, although modifications in the metallic phase could lead to higher dispersions and more active centers, it could also favour the CO production through the rWGS reaction ^[4]. Therefore, a balance between the particle size and optimal metal-support interactions should be achieved to develop highly active and selective catalysts for CO₂ methanation. In this work, the remarkable lowtemperature CO₂ methanation activity of Ni/CeO₂-nanorod catalysts with variable particle size induced by the citric acid concentration during their synthesis is reported. Various complementary characterization techniques, namely N₂ physisorption, XRD, Raman spectroscopy, HR-TEM, H₂-TPR, CO_2 -TPD, H_2 -TPD, and XPS, were employed to assess the structure sensitivity of the developed catalysts for the CO₂ methanation reaction.

KEYWORDS: CO₂ Hydrogenation, Ni/CeO₂, Citric acid assisted synthesis, Ni Dispersion

ACKNOWLEDGMENTS

This research has been co-financed by the European Union NextGenerationEU under the call RESEARCH – CREATE – INNOVATE 16971 Recovery and Resilience Facility (project code: TAEDK-06169).

REFERENCES

- [1] Götz M, Lefebvre J, Mörs F, McDaniel Koch A, Graf F, Bajohr S, Reimert R, Kolb T. (2016). *Renew. Energy*, 85, 1371–1390.
- [2] Han F, Liu Q, Li D, Ouyang J. (2023). J. Environ. Chem. Eng., 11, 110331.
- [3] Konsolakis M, Lykaki M, Stefa S, Carabineiro S A C, Varvoutis G, Papista E, Marnellos G E. (2019). J. Nanomater, 9(12):1739.
- [4] Varvoutis G, Lykaki M, Stefa S, Binas V, Marnellos G E, Konsolakis M. (2021). Appl. Catal., B, 297, 120401.