ELECTRIFICATION OF CHEMICAL INDUSTRY: CO₂/H₂O ELECTRO-CONVERSION TO LIGHT OLEFINS IN CO-IONIC CERAMIC REACTORS

C. Athanasiou^{1,2,*}, A. Banti^{2,3}, K. Makridis^{2,3}, E.A. Nanaki^{4,5}, S. Kiartzis⁴, K. Christoforidis^{1,2}, V. Kyriakou⁶, M. Konsolakis⁷, V. Binas⁸, G.E. Marnellos^{2,3}

¹Department of Environmental Engineering, Democritus University of Thrace, Xanthi, Greece
²Chemical Process & Energy Resources Institute, CERTH, Thermi, Thessaloniki, Greece
³Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece
⁴Dept. New Technologies and Alternative Energy Sources, HELLENiQ ENERGY, Athens, Greece
⁵University of Aarhus, Dept. of Business Development and Technology, Herning, Denmark
⁶Department of Chemical Engineering, Engineering and Technology Institute
Groningen (ENTEG), University of Groningen, Groningen, The Netherlands
⁷Technical University of Crete, School of Production Engineering and Management, Chania, Greece
⁸Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece

(*<u>kathan@env.duth.gr</u>)

ABSTRACT

The chemical industry is a major global warming contributor, and its detach from oil or other fossil carbon sources is a unidirectional urgency towards sustainability. Light olefins (C_{2-4}) are among the top chemicals, in production volumes ^[1] and the key building blocks for a vast range of products. They are mainly produced by naphtha steam cracking, an energy intensive process that charges each C_{2-4} ton with up to 11.5 tons of CO_2 emissions, depending on the production route and the energy sources (usually 2 – 5 tnCO₂, for oil and natural gas) ^[2]. The necessity to detach C₂₋₄⁼s from oil has activated intense research efforts towards CO₂ hydrogenation by renewable H₂, a benchmark equilibrium limited reaction, conducted at 30 bars^[3]. For the stoichiometric ethylene and propylene production, and 50 kWh/kgH₂ typical electrolysis consumption ^[4], C₂₋₄⁼s specific electricity consumption is 7.1 MWh/tnC₂₋₄⁼. For EU's ethylene and propylene production (20 and 15 Mtn/a, respectively ^[5]) this consumption amounts to 250 TWh/a, i.e. to ca. 7 % of the total EU's electricity balance. Moreover, the low $C_{2-4}^{=}$ yield of the thermochemical reaction (< 10 %), due to primarily CH₄, other hydrocarbons, CO and H₂O byproducts, results in a ten-fold increase of the electricity requirement, and complexes the estimation of the energy costs for electrified C2-4=s. ECOLEFINS project was granted to originally put forward a new paradigm for C₂₋₄⁼ electrosynthesis in co-ionic (H⁺ and O²⁻) electrochemical membrane reactors (ci-EMRs). The concept promises to substantially suppress CO/H₂O byproducts, thus drastically increase C₂₋₄=s yield and decrease specific electricity consumption and C2-4⁼s electricity costs. The present work describes the ECOLEFINS concept and examines the impacts of the ci-EMRs' targeted performance on the electricity requirements and the economics of electrified C_{2-4} s, with respect to C_{2-4} s yields, ci-EMRs' specific resistance, electricity prices, carbon taxes and technology costs.

KEYWORDS: olefins electrification, electrochemical reactors, co-ionic electrolytes

ACKNOWLEDGEMENTS: This research has received funding from the European Union under grant agreement No 101099717 – ECOLEFINS project.

REFERENCES

- [1] Ma Z, Porosoff M. (2019). ACS Catalysis, 9(3), 2639–2656.
- [2] Schiffer Z, Manthiram, K. (2017). Joule, 1(1), 10–14.

- [3] Ye R, Ding J, Gong W, Argyle M, Zhong Q, Wang Y, Russell C, Xu Z, Russell A, Li Q, Fan M, Yao Y. (2019) *Nature Communications*, 10, 5698.
- [4] Hydrogen Europe, Strategic Research and Innovation Agenta. (2020).
- [5] petrochemistry.eu/petrochemicals-facts-and-figures/european-market-overview/