DEMONSTRATING CO₂ CAPTURE AND IN SITU UTILIZATION TOWARD SYNGAS PRODUCTION IN A CARBONATE LOOPING PROCESS COUPLED WITH DRY CH₄ REFORMING

T. Papalas^{1,2}, A.N. Antzaras^{1,*}, D. Lypiridis¹, E. Trimpos¹, V. Zaspalis^{1,3}, A.A. Lemonidou^{1,3}

¹Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece ²Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK

³Centre for Research & Technology Hellas (CERTH), Thermi, Greece

(*<u>aantzara@cheng.auth.qr</u>)

ABSTRACT

Extensive use of fossil fuels has resulted in increase of CO_2 emissions, with large industrial plants contributing to more than 60% of the global emissions. This has led to CO_2 concentrations far above pre-industrial levels, which is considered the main contributing factor to global warming. In this context, it is necessary to reduce the CO_2 emissions and mitigate their negative effect. At this direction, research efforts are focused on developing processes for CO_2 capture and its *in-situ* catalytic conversion to value-added chemicals. Such an approach is the integration of carbonate looping, a post-combustion technology, with dry reforming of CH_4 ^[1,2]. In carbonate looping, CO_2 is separated from the flue gas by applying the reversible carbonation of CaO. However, periodic calcination of formed CaCO₃ is required at elevated temperatures. The calcination-released CO_2 can be directly converted to syngas in an integrated scheme, where decomposition of CaCO₃ is performed along with dry CH₄ reforming (DMR). This approach has the potential to intensify the process, as calcination is performed at lower temperatures, according to *Le Chatelier's* principle, and contribute to mitigation of CO_2 emissions.

In this work the experimental demonstration of the integrated process is provided over a bifunctional material (BFM) that combines both CO₂ capture and reforming activities. Synthesis of a 10wt%NiO/60wt%CaO-CaZrO₃ BFM was performed *via* a sol-gel auto-combustion technique ^[3]. Coupling CaCO₃ calcination with DMR was demonstrated in a lab-scale unit equipped with a fluidized bed reactor, while a parametric evaluation for the integrated calcination step was performed, by varying main operating conditions. Applying a CH₄ flow enabled rapid CaCO₃ decomposition even at low temperatures (625-750 °C) compared to inert flow, since the *in-situ* CO₂ consumption increased the calcination driving force. At 700 °C syngas production with a stable H₂/CO ratio of ~1 was achieved, until the complete calcination of the material. The *in-situ* consumption of the released CO₂ enabled complete calcination even at 625 °C, while leading up to 80% CO₂ utilization. Studies on synthesis of core-shell BFMs are in progress to further improve the coupling of the two reactions.

KEYWORDS: Calcium looping; Integrated CO₂ capture and utilization, CH₄ dry reforming, Bifunctional material, Syngas production

ACKNOWLEDGEMENTS

The research project was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the "3rd Call for H.F.R.I. Research Projects to support Post–Doctoral Researchers" (Project Number: 7155).

REFERENCES

- [1] Tian S, Yan F, Zhang Z, Jiang J. (2019) Sci. Adv., 5, 1–9.
- [2] Papalas T, Lypiridis D, Antzaras A.N, Lemonidou A.A. (2024) Chem Eng. J., 149866.
- [3] Antzaras A.N., Heracleous E, Lemonidou A.A. (2021) Catal. Today, 369, 2–11.