# $$\label{eq:constraint} \begin{split} \mathsf{Π}\mathsf{A}\mathsf{P}\mathsf{A}\mathsf{F}\Omega\mathsf{F}\mathsf{H}_{3}\mathsf{H}_{6}\;\mathsf{M}\mathsf{E}\Sigma\Omega\;\mathsf{O}\Xi\mathsf{E}\mathsf{I}\Delta\Omega\mathsf{T}\mathsf{I}\mathsf{K}\mathsf{H}\Sigma\;\mathsf{A}\Phi\mathsf{Y}\Delta\mathsf{P}\mathsf{O}\mathsf{F}\mathsf{O}\mathsf{N}\Omega\Sigma\mathsf{H}\Sigma\;\mathsf{T}\mathsf{O}\mathsf{Y}\;\mathsf{C}_{3}\mathsf{H}_{8}\;\mathsf{M}\mathsf{E}\;\mathsf{C}\mathsf{O}_{2}\;\mathsf{\Sigma}\mathsf{E}\;\mathsf{\Sigma}\mathsf{Y}\mathsf{N}\Theta\mathsf{E}\mathsf{T}\mathsf{A}\\ \mathsf{O}\Xi\mathsf{E}\mathsf{I}\Delta\mathsf{I}\mathsf{A}\;\;\mathsf{M}_{x}\mathsf{O}_{y}\text{-}\mathsf{T}\mathsf{I}\mathsf{O}_{2} \end{split}$$

## <u>Α. Φλώρου<sup>1</sup></u>, Γ. Μπάμπος<sup>2</sup>, Π. Νάτση<sup>2</sup>, Α. Κόκκα<sup>1</sup>, Π. Παναγιωτοπούλου<sup>1,\*</sup>

<sup>1</sup>Σχολή Χημικών Μηχανικών και Μηχανικών Περιβάλλοντος, Πολυτεχνείο Κρήτης, Χανιά, Ελλάδα <sup>2</sup>Τμήμα Χημικών Μηχανικών, Πανεπιστήμιο Πατρών, Πάτρα, Ελλάδα

(\*ppanagiotopoulou@tuc.gr)

#### ΠΕΡΙΛΗΨΗ

Στην παρούσα εργασία μελετάται η ενεργότητα σύνθετων οξειδίων μετάλλων με βάση το TiO<sub>2</sub>, 10% $M_xO_y$ -TiO<sub>2</sub> (M: Zr, Ce, Ca, Cr, Ga), για την αντίδραση της οξειδωτικής αφυδρογόνωσης του προπανίου ( $C_3H_8$ ) με διοξείδιο του άνθρακα ( $CO_2$ ) (Oxidative Dehydrogenation of Propane- $CO_2$ , ODP-CO<sub>2</sub>). Βρέθηκε ότι η επιφανειακή βασικότητα των σύνθετων οξειδίων μετάλλων είναι σημαντικά υψηλότερη από εκείνη του σκέτου TiO2 και μεταβάλλεται με τρόπο που εξαρτάται σε μεγάλο βαθμό από τη φύση του  $M_xO_y$ . Η προσθήκη του  $M_xO_y$  στην επιφάνεια του TiO<sub>2</sub> οδηγεί σε σημαντική βελτίωση της καταλυτικής συμπεριφοράς, λόγω συνεργιστικής αλληλεπίδρασης μεταξύ των  $M_xO_y$  και TiO<sub>2</sub>. Υψηλότερη μετατροπή  $C_3H_8$  και απόδοση ως προς προπυλένιο ( $C_3H_6$ ) παρουσίασαν οι καταλύτες Cr2O3-TiO2 και Ga2O3-TiO2, οι οποίοι χαρακτηρίζονται από μέτρια βασικότητα. Η ενίσχυση της αναγωγιμότητας των δύο αυτών καταλυτών καθώς και της επιφανειακής οξύτητας του καταλύτη Ga2O3-TiO2 συνέβαλαν στη βελτίωση της καταλυτικής συμπεριφοράς. Επίσης, παρατηρήθηκε μια γενική τάση αύξησης της καταλυτικής ενεργότητας με μείωση του μεγέθους των κρυσταλλιτών του TiO<sub>2</sub>. Πειράματα in-situ DRIFTS που πραγματοποιήθηκαν υπό συνθήκες αντίδρασης έδειξαν ότι η ρόφηση του CO2 ευνοείται στην επιφάνεια των σύνθετων οξειδίων, πιθανόν λόγω της αυξημένης επιφανειακής βασικότητας που παρατηρήθηκε με την προσθήκη M<sub>x</sub>O<sub>y</sub> στο TiO<sub>2</sub>. Τέλος, ο καταλύτης Ga<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> παρουσίασε εξαιρετική σταθερότητα για 30 ώρες αντίδρασης, υποδεικνύοντας ότι είναι κατάλληλος για την παραγωγή  $C_3H_6$  μέσω της αντίδρασης ODP-CO<sub>2</sub>.

**ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ:** Οξειδωτική αφυδρογόνωση του C<sub>3</sub>H<sub>8</sub> με CO<sub>2</sub>, παραγωγή C<sub>3</sub>H<sub>6</sub>, σύνθετα οξείδια, TiO<sub>2</sub>

## ΕΙΣΑΓΩΓΗ

Το προπυλένιο (C<sub>3</sub>H<sub>6</sub>) αποτελεί πρόδρομη ένωση διαφόρων παραγώγων (π.χ. πολυπροπυλένιο, ακρυλικό οξύ, ακρυλονιτρίλιο κλπ.) που χρησιμοποιούνται στην καθημερινότητα μας και για αυτό, θεωρείται βασικό συστατικό της χημικής βιομηχανίας <sup>[1]</sup>. Μία από τις παραδοσιακές μεθόδους που χρησιμοποιούνται για την παραγωγή C<sub>3</sub>H<sub>6</sub> είναι η αντίδραση αφυδρογόνωσης του προπανίου ( $C_3H_8$ ), η οποία είναι ισχυρά ενδόθερμη και υπόκειται σε θερμοδυναμικούς περιορισμούς. Ως εναλλακτική μέθοδος παραγωγής C<sub>3</sub>H<sub>6</sub> έχει προταθεί η οξειδωτική αφυδρογόνωση του C<sub>3</sub>H<sub>8</sub> παρουσία μοριακού οξυγόνου, η οποία είναι εξώθερμη αντίδραση και λαμβάνει χώρα σε χαμηλές θερμοκρασίες χωρίς θερμοδυναμικούς περιορισμούς. Το κύριο μειονέκτημα της διεργασίας αυτής είναι η πλήρης οξείδωση του C<sub>3</sub>H<sub>8</sub> προς CO και CO<sub>2</sub>, με αποτέλεσμα χαμηλές αποδόσεις σε  $C_3H_6$ . Για τον λόγο αυτόν, η αντικατάσταση του μοριακού  $O_2$  από ένα πιο ήπιο οξειδωτικό, όπως το CO<sub>2</sub>, έχει αποκτήσει πρόσφατα ενδιαφέρον ως μια εναλλακτική προσέγγιση εκλεκτικής παραγωγής  $C_3H_6$ <sup>[2]</sup>. Το πλεονέκτημα αυτής της διεργασίας είναι ότι το CO<sub>2</sub> συμμετέχει τόσο στη μετατροπή του C<sub>3</sub>H<sub>8</sub> σε C<sub>3</sub>H<sub>6</sub> όσο και στην αντίστροφη αντίδραση μετατόπισης του CO με ατμό (RWGS) καταναλώνοντας το H<sub>2</sub> που παράγεται από την αφυδρογόνωση του C<sub>3</sub>H<sub>8</sub>, υπερνικώντας με αυτό τον τρόπο τους περιορισμούς ισορροπίας της τελευταίας αντίδρασης και ενισχύοντας την απόδοση σε  $C_3H_6$ <sup>[3]</sup>. Ωστόσο, ανάλογα με τον καταλύτη που χρησιμοποιείται και τις συνθήκες αντίδρασης είναι πιθανό να λαμβάνουν χώρα ταυτόχρονα οι αντιδράσεις υδρογονόλυσης του C<sub>3</sub>H<sub>8</sub>, καθώς και οι αντιδράσεις διάσπασης του C<sub>3</sub>H<sub>8</sub> ή/και του C<sub>3</sub>H<sub>6</sub> οδηγώντας σε χαμηλές αποδόσεις προπυλενίου και εναπόθεση άνθρακα<sup>[3]</sup>. Είναι λοιπόν σημαντικό να προσδιοριστούν οι λειτουργικές συνθήκες αντίδρασης και οι φυσικοχημικές ιδιότητες των καταλυτικών υλικών που οδηγούν σε βέλτιστη καταλυτική συμπεριφορά. Επιπρόσθετα, το CO<sub>2</sub> είναι πιθανό να λαμβάνει μέρος ταυτόχρονα και στην αντίστροφη αντίδραση Boudouard, απομακρύνοντας τον άνθρακα από την επιφάνεια του καταλύτη και βελτιώνοντας με τον τρόπο αυτό τη σταθερότητα του.

Σημαντικό πλεονέκτημα της συγκεκριμένης διεργασίας αποτελεί η αξιοποίηση του CO<sub>2</sub>, οι εκπομπές του οποίου έχουν αυξηθεί ραγδαία στην ατμόσφαιρα τις τελευταίες δεκαετίες και, στις μέρες μας, θεωρείται ως ένα από τα κύρια αέρια του θερμοκηπίου, με αποτέλεσμα την υπερθέρμανση του πλανήτη, και κατ' επέκταση σημαντικές κλιματικές αλλαγές<sup>[4]</sup>. Ωστόσο, το CO<sub>2</sub> αποτελεί μία θερμοδυναμικά σταθερή ένωση, για τη μετατροπή της οποίας απαιτούνται αντιδρώντα υψηλής ενέργειας σε συνδυασμό με ενεργούς και εκλεκτικούς καταλύτες, καθώς και βέλτιστες συνθήκες αντίδρασης. Συνεπώς, προκειμένου η διεργασία να είναι αποτελεσματική απαιτείται η επιλογή (α) κατάλληλων καταλυτών, οι οποίοι θα ενισχύουν την αντίδραση ODP-CO<sub>2</sub> και την RWGS, αλλά και θα καταστέλλουν τις αντιδράσεις διάσπασης και υδρογονόλυσης των C<sub>3</sub>H<sub>8</sub> ή/και C<sub>3</sub>H<sub>6</sub> και (β) κατάλληλων συνθηκών αντίδρασης.

Στην παρούσα μελέτη, μελετήθηκε η αντίδραση ODP-CO<sub>2</sub> σε σύνθετα οξείδια μετάλλων  $M_xO_y$ -TiO<sub>2</sub> (M: Ce, Zr, Ca, Cr, Ga). Διερευνήθηκε η επίδραση της φύσης του  $M_xO_y$  στις φυσικοχημικές ιδιότητες του TiO<sub>2</sub> μέσω λεπτομερούς χαρακτηρισμού των καταλυτών με σκοπό τη συσχέτιση των ιδιοτήτων αυτών με την καταλυτική συμπεριφορά, προκειμένου να αναπτυχθούν ενεργοί και εκλεκτικοί καταλύτες για την παραγωγή C<sub>3</sub>H<sub>6</sub>. Επίσης, πραγματοποιήθηκαν *in-situ* πειράματα υπέρυθρης φασματοσκοπίας (DRIFTS) με στόχο τον προσδιορισμό των επιφανειακών ενδιάμεσων ειδών που σχηματίζονται κατά την αντίδραση και τον προσδιορισμό της επίδρασης του  $M_xO_y$  στην ενεργοποίηση των αντιδρώντων.

## ΜΕΘΟΔΟΛΟΓΙΑ

Oι καταλύτες 10%M<sub>x</sub>O<sub>y</sub>-TiO<sub>2</sub> παρασκευάστηκαν με τη μέθοδο του υγρού εμποτισμού χρησιμοποιώντας σαν πρόδρομες ενώσεις άλατα μετάλλων (Ce(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O, ZrO(NO<sub>3</sub>)<sub>2</sub>·6H<sub>2</sub>O, Ca(NO<sub>3</sub>)<sub>2</sub>·4H<sub>2</sub>O, Ga(NO<sub>3</sub>)<sub>3</sub>·6H<sub>2</sub>O, Cr(NO<sub>3</sub>)<sub>3</sub>) και εμπορικό φορέα TiO<sub>2</sub>. Μετά τον εμποτισμό ακολούθησε ξήρανση των στερεών στους 120 °C για 12 h και πύρωση στους 600 °C για 3 h. Ο χαρακτηρισμός των καταλυτών πραγματοποιήθηκε με τις τεχνικές B.Ε.T, XRD, CO<sub>2</sub>-TPD, FTIR μετά από ρόφηση CO<sub>2</sub>, TGA μετά από ρόφηση NH<sub>3</sub> και H<sub>2</sub>-TPR. Η καταλυτική συμπεριφορά μελετήθηκε στο θερμοκρασιακό εύρος 570-750 °C, χρησιμοποιώντας σύσταση τροφοδοσίας 5%C<sub>3</sub>H<sub>8</sub>+25%CO<sub>2</sub>/He και συνολική ροή 50 cm<sup>3</sup>/min. Πριν από κάθε πείραμα ο καταλύτης υφίσταται προκατεργασία με θέρμανση στους 450 °C για 1 h υπό ροή He. Η αλληλεπίδραση καταλυτών με το μίγμα της αντίδρασης διερευνήθηκε, επίσης, με την τεχνική της *in-situ* φασματοσκοπίας FTIR στο θερμοκρασιακό εύρος 100-500 °C με σύσταση τροφοδοσίας αποτελούμενη από 1%C<sub>3</sub>H<sub>8</sub>+5%CO<sub>2</sub> (σε He).

## ΑΠΟΤΕΛΕΣΜΑΤΑ ΚΑΙ ΣΥΖΗΤΗΣΗ

Τα αποτελέσματα από τον χαρακτηρισμού των υλικών με τη μέθοδο B.Ε.Τ παρουσιάζονται στον Πίνακα 1. Η προσθήκη ενός οξειδίου μετάλλου στην επιφάνεια του TiO<sub>2</sub> οδηγεί γενικά σε μικρή μείωση της ειδικής επιφάνειας (Specific Surface Area, SSA), με εξαίρεση τους καταλύτες ZrO<sub>2</sub>-TiO<sub>2</sub> και Ga<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> που παρουσίασαν αύξηση της SSA. Η μείωση της SSA οφείλεται πιθανότατα στη μερική απόφραξη των πόρων του TiO<sub>2</sub> που προκαλείται από την παρουσία  $M_xO_y$  στην επιφάνειά του, ενώ η παρατηρούμενη αύξηση της SSA σχετίζεται με το πρόσθετο πορώδες των σωματιδίων του οξειδίου μετάλλου<sup>[2]</sup>. Από τον χαρακτηρισμό των καταλυτών με τη τεχνική XRD διαπιστώθηκε ότι η προσθήκη οξειδίων μετάλλων στην επιφάνεια του TiO<sub>2</sub> οδηγεί γενικά στη μείωση του μεγέθους των κρυσταλλιτών του TiO<sub>2</sub> καθώς και στην αύξηση της περιεκτικότητας του σε anatase.

| Catalyst                                             | SSA <sup>1</sup><br>(m <sup>2</sup> g <sup>-1</sup> ) | Crystallite size <sup>2</sup><br>(nm) |                               | Anatase Content <sup>3</sup><br>(%) |
|------------------------------------------------------|-------------------------------------------------------|---------------------------------------|-------------------------------|-------------------------------------|
|                                                      |                                                       | Anatase<br>d <sub>TiO2,A</sub>        | Rutile<br>d <sub>TiO2,R</sub> | _                                   |
| TiO <sub>2</sub>                                     | 36.9                                                  | 22.5                                  | 36.8                          | 59                                  |
| 10% CeO <sub>2</sub> -TiO <sub>2</sub>               | 33.8                                                  | 22.7                                  | 34.2                          | 66                                  |
| 10% CaO-TiO <sub>2</sub>                             | 33.9                                                  | 19.9                                  | 28.2                          | 79                                  |
| 10% ZrO <sub>2</sub> -TiO <sub>2</sub>               | 41.7                                                  | 19.9                                  | 23.9                          | 83                                  |
| 10% Cr <sub>2</sub> O <sub>3</sub> -TiO <sub>2</sub> | 36.4                                                  | 22.7                                  | 21.8                          | 83                                  |
| 10% Ga <sub>2</sub> O <sub>3</sub> -TiO <sub>2</sub> | 47.9                                                  | 18.3                                  | 14.9                          | 78                                  |

Πίνακας 1. Φυσικοχημικά χαρακτηριστικά των σύνθετων οξειδίων μετάλλων.

<sup>1</sup>Ειδική επιφάνεια όπως υπολογίστηκε από τη μέθοδο BET, <sup>2</sup>Μέγεθος κρυσταλλιτών του TiO<sub>2</sub> υπολογισμένο από τα περιθλασιογράμματα XRD, <sup>3</sup>Περιεκτικότητα σε anatase, που εκτιμάται από τις χαρακτηριστικές κορυφές στα περιθλασιογράμματα XRD, στη φάση anatase (101) και rutile (110).

Τα χαρακτηριστικά ρόφησης/εκρόφησης του CO<sub>2</sub> σε καταλύτες TiO<sub>2</sub> και M<sub>x</sub>O<sub>y</sub>-TiO<sub>2</sub> μελετήθηκαν με την τεχνική FTIR. Τυπικά αποτελέσματα παρουσιάζονται στο Σχήμα 1 για το σκέτο TiO<sub>2</sub> και το Ga<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub>. Συνοπτικά, τα ροφημένα είδη που ανιχνεύτηκαν στην επιφάνεια των καταλυτών

αποδόθηκαν σε καρβοξυλικά (1668 και 1222 cm<sup>-1</sup>), διττανθρακικά (1649-1617, 1444-1405 και 1222 cm<sup>-1</sup>), διδοντικά ανθρακικά (1580-1572 και 1351 cm<sup>-1</sup>) και μονοδοντικά ανθρακικά (1538-1522 και είδη<sup>[2]</sup>. cm<sup>-1</sup>) 1320 Αύξηση της θερμοκρασίας οδήγησε σε όλες τις περιπτώσεις σε σταδιακή εκρόφηση των ροφημένων ειδών από την καταλυτική επιφάνεια. Η σύγκριση μεταξύ των φασμάτων DRIFT των υπό εξέταση καταλυτών έδειξε ότι τόσο ο πληθυσμός, όσο και η θερμοκρασία εκρόφησης των ροφημένων ειδών από την καταλυτική επιφανειακών ειδών που σχηματίζονται μέσω αλληλεπίδρασης του καταλύτη με το CO<sub>2</sub>, αυξάνονται ακολουθώντας τη σειρά TiO<sub>2</sub> (σκέτο) ~ ZrO<sub>2</sub> < Cr<sub>2</sub>O<sub>3</sub> < CeO<sub>2</sub> < Ga<sub>2</sub>O<sub>3</sub> < CaO. Λαμβάνοντας υπόψη τον όξινο χαρακτήρα του CO<sub>2</sub>, είναι αναμενόμενο να βασικές θέσεις ροφάται στις των μεταλλικών οξειδίων. Ως εκ τούτου, η βασικότητα των υπό εξέταση καταλυτών φαίνεται να ακολουθεί την παραπάνω σειρά. Από τα αποτελέσματα των πειραμάτων CO<sub>2</sub>-TPD που πραγματοποιήθηκαν με τη τεχνική της



Wavenumber (cm<sup>-1</sup>) Wavenumber (cm<sup>-1</sup>) **Σχήμα 1**: Φάσματα DRIFT που ελήφθησαν έπειτα από αλληλεπίδρασή των καταλυτών (a) TiO<sub>2</sub> και (b) 10%Ga<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> με 5%CO<sub>2</sub>/He στους 25 °C για 30 min και σταδιακή αύξηση της θερμοκρασίας στους 450 °C υπό ροή He.

φασματομετρίας μάζας (δεν παρουσιάζονται εδώ) παρατηρείται ότι σε όλες τις περιπτώσεις καταλυτών εμφανίζονται δύο κορυφές, μία σε χαμηλές θερμοκρασίες, η οποία αποδίδεται σε ασθενείς βασικές θέσεις και μία σε υψηλές θερμοκρασίες, η οποία οφείλεται στην εκρόφηση του CO<sub>2</sub> από ισχυρά ή/και μέτρια βασικές θέσεις. Η προσθήκη οξειδίου του μετάλλου στην επιφάνεια

του TiO<sub>2</sub> οδηγεί στην αύξηση της έντασης και των δύο κορυφών. Η συνολική ποσότητα του εκροφημένου CO<sub>2</sub> αυξάνεται ακολουθώντας τη σειρά TiO<sub>2</sub> (σκέτο) <  $ZrO_2 < Cr_2O_3 \sim CeO_2 < Ga_2O_3 < CaO$ . Τα αποτελέσματα αυτά έρχονται σε συμφωνία με τα αποτελέσματα του Σχήματος 1, υποδηλώνοντας ότι η βασικότητα των σύνθετων οξειδίων μετάλλων είναι σημαντικά υψηλότερη από εκείνη του σκέτου TiO<sub>2</sub> και μεταβάλλεται με τρόπο που εξαρτάται από τη φύση του M<sub>x</sub>O<sub>y</sub>.

Τα αποτελέσματα των πειραμάτων καταλυτικής συμπεριφοράς συνοψίζονται στο Σχήμα 2, στο οποίο παρουσιάζεται η μετατροπή του προπανίου ( $X_{C3H8}$ ) και η απόδοση ως προς προπυλένιο ( $Y_{C3H6}$ ) συναρτήσει της θερμοκρασίας αντίδρασης. Παρατηρείται ότι η προσθήκη 10% $M_xO_y$  στην επιφάνεια του TiO<sub>2</sub> οδηγεί, σε όλες στις περιπτώσεις, σε σημαντική βελτίωση της καταλυτικής συμπεριφοράς, με την καμπύλη της  $X_{C3H8}$  να μετατοπίζεται προς χαμηλότερες θερμοκρασίες. Υψηλότερη ενεργότητα παρουσίασαν τα σύνθετα οξείδια Ga<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> και Cr<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> για τα οποία βρέθηκε ότι η  $X_{C3H8}$  φτάνει το 80% στους 745 °C, ενώ τα ZrO<sub>2</sub>-TiO<sub>2</sub> και CaO-TiO<sub>2</sub> εμφάνισαν ενδιάμεση καταλυτική συμπεριφορά. Το CeO<sub>2</sub>-TiO<sub>2</sub> αν και βρέθηκε πιο ενεργό σε σχέση με το σκέτο TiO<sub>2</sub> σε θερμοκρασίες < 700 °C, σε υψηλότερες θερμοκρασίες παρουσίασαν παρόμοιες  $X_{C3H8}$ . Το  $Y_{C3H6}$  βρέθηκε να επηρεάζεται από τη φύση του M<sub>x</sub>O<sub>y</sub> και αυξήθηκε από 5.5 σε 16% στους 700 °C ακολουθώντας τη σειρά TiO<sub>2</sub> (σκέτο) < CaO-TiO<sub>2</sub> < CeO<sub>2</sub>-TiO<sub>2</sub> < ZrO<sub>2</sub>-TiO<sub>2</sub> < Cr<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> <sup>[2]</sup>.



**Σχήμα 2:** (a) Μετατροπή C<sub>3</sub>H<sub>8</sub> και (b) απόδοση ως προς C<sub>3</sub>H<sub>6</sub> συναρτήσει της θερμοκρασίας αντίδρασης για τα σύνθετα οξείδια 10%M<sub>x</sub>O<sub>y</sub>-TiO<sub>2</sub>.

Τα κύρια προϊόντα που ανιχνεύθηκαν σε όλους τους καταλύτες ήταν C<sub>3</sub>H<sub>6</sub>, CO, C<sub>2</sub>H<sub>4</sub> και CH<sub>4</sub>, ενώ

σε ορισμένες περιπτώσεις ανιχνευτήκαν και ίχνη  $C_2H_6$ . Τυπικά αποτελέσματα από την κατανομή των προϊόντων παρουσιάζονται στο Σχήμα 3 για τον καταλύτη Ga<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub>. Η ταυτόχρονη παραγωγή CO και C<sub>3</sub>H<sub>6</sub> υποδεικνύει ότι λαμβάνει χώρα η επιθυμητή αντίδραση οξειδωτικής αφυδρογόνωσης του προπανίου, ενώ μέρος του παραγόμενου CO πιαθανό να οφείλεται στην αντίδραση RWGS ή/και στην αντίστροφη αντίδραση Boudouard. Οι εκλεκτικότητες ως προς C<sub>2</sub>H<sub>4</sub> και CH<sub>4</sub> αυξάνονται με αύξηση της θερμοκρασίας αντίδρασης, φανερώνοντας ότι λαμβάνουν χώρα οι αντιδράσεις υδρογονόλυσης του  $C_3H_8$  και διάσπασης του  $C_3H_8$  ή/και του  $C_3H_6$ .





Συγκρίνοντας τα αποτελέσματα του Σχήματος 2 με τα αποτελέσματα του χαρακτηρισμού των καταλυτών (Πίνακας 1), υπάρχει μια συσχέτιση μεταξύ της καταλυτικής συμπεριφοράς και του μεγέθους των κρυσταλλιτών του TiO<sub>2</sub>. Αυτό φαίνεται καθαρά στο Σχήμα 4a, στο οποίο απεικονίζονται οι X<sub>C3H8</sub> και Y<sub>C3H6</sub> στους 700 °C συναρτήσει του μέσου μεγέθους των κρυσταλλιτών

του TiO<sub>2</sub> στη φάση rutile ( $d_{TiO2,R}$ ). Παρατηρείται ότι τόσο η  $X_{C3H8}$  όσο και η  $Y_{C3H6}$  αυξάνονται από 15 σε 45% και από 6.5 σε 16%, αντίστοιχα, με μείωση του  $d_{TiO2,R}$  από 36.8 σε 14.9 nm. Μια παρόμοια γενική τάση αλλά σε μικρότερο βαθμό βρέθηκε επίσης να ισχύει μεταξύ των  $X_{C3H8}$  και  $Y_{C3H6}$ , και του μέσου μεγέθους των κρυσταλλιτών του TiO<sub>2</sub> στη φάση του anatase ( $d_{TiO2,A}$ ). Τα αποτελέσματα δείχνουν ότι η παραγωγή  $C_3H_6$  μέσω της αντίδρασης ODP-CO<sub>2</sub> ευνοείται σε μικρούς κρυσταλλίτες TiO<sub>2</sub>. Επιπλέον, με βάση τα αποτελέσματα του Σχήματος 1 καθώς και των πειραμάτων CO<sub>2</sub>-TPD, η επιφανειακή βασικότητα βελτιώνεται με την προσθήκη του  $M_xO_y$  στην επιφάνεια του TiO<sub>2</sub>, ενώ η καταλυτική ενεργότητα φαίνεται να είναι υψηλότερη σε σύνθετα οξείδια τα οποία χαρακτηρίζονται από μέτρια βασικότητα. Αυτό απεικονίζεται στο Σχήμα 4b, όπου οι  $X_{C3H8}$  και  $Y_{C3H6}$  στους 700 °C παρουσιάζονται συναρτήσει της συνολικής ποσότητας του CO<sub>2</sub> που εκροφάται κατά τη διάρκεια των πειραμάτων CO<sub>2</sub>-TPD. Παρατηρείται ότι τόσο η  $X_{C3H8}$  όσο και η  $Y_{C3H6}$  αυξάνονται με αύξηση της επιφανειακής βασικότητας, παρουσιάζοντας μεγιστες τιμές για τους καταλύτες Cr<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> και Ga<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub>, ενώ μειώνονται ραγδαία για τον καταλύτη CaO-TiO<sub>2</sub>, ο οποίος βρέθηκε να περιέχει τον μεγαλύτερο αριθμό βασικών θέσεων.



**Σχήμα 4:** Μετατροπή C<sub>3</sub>H<sub>8</sub> και απόδοση ως προς C<sub>3</sub>H<sub>6</sub> στους 700 °C συναρτήσει (a) του μέσου μεγέθους των κρυσταλλιτών του TiO<sub>2</sub> στη φάση rutile και (b) της συνολικής ποσότητας CO<sub>2</sub> που εκροφάται κατά τη διάρκεια πειραμάτων CO<sub>2</sub>-TPD.

Για τα δείγματα TiO<sub>2</sub>, Cr<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> και Ga<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub>, εξετάστηκε επίσης η επιφανειακή οξύτητά τους πραγματοποιώντας πειράματα θερμοβαρυμετρικής ανάλυσης (TGA) έπειτα από ρόφηση NH3 στους 25 °C. Βρέθηκε ότι η πυκνότητα των όξινων θέσεων είναι ίση με 310.1 μmol/g για το TiO<sub>2</sub>, 318.8 μmol/g για το Cr<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> και 510.3 μmol/g για το Ga<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub>, υποδεικνύοντας ότι η συνολική επιφανειακή οξύτητα αυξάνεται με την προσθήκη του Ga2O3 στο TiO2 αλλά δεν επηρεάζεται πρακτικά από την τροποποίηση του ΤίΟ2 με το Cr2O3. Επιπλέον, η αναγωγιμότητα των παραπάνω καταλυτών εξετάστηκε πραγματοποιώντας πειράματα H2-TPR. Σύμφωνα με τα αποτελέσματα βρέθηκε ότι η συνολική ποσότητα H2 που καταναλώνεται αυξάνεται ακολουθώντας τη σειρά TiO<sub>2</sub> (31.1 μmol/g) < Cr<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> (51.2 μmol/g) < Ga<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> (106.5 µmol/g), φανερώνοντας ότι η αναγωγιμότητα ενισχύεται με την προσθήκη του Cr<sub>2</sub>O<sub>3</sub> και πολύ περισσότερο με την προσθήκη του  $Ga_2O_3$  στο  $TiO_2$ . Συμπερασματικά, η συνεργιστική επίδραση μεταξύ των M<sub>x</sub>O<sub>y</sub> και TiO<sub>2</sub> φαίνεται να περιλαμβάνει την τροποποίηση των φυσικοχημικών ιδιοτήτων των καταλυτών, συμπεριλαμβανομένης της επιφανειακής οξύτητας/βασικότητας, της αναγωγιμότητας, καθώς και της περιεκτικότητας σε anatase/rutile και του μεγέθους των κρυσταλλιτών του TiO2, οι οποίες επηρεάζουν την καταλυτική ενεργότητα και την απόδοση ως προς προπυλένιο<sup>[3]</sup>.

Η επίδραση του χρόνου αντίδρασης στη συμπεριφορά του καταλύτη  $Ga_2O_3$ -TiO<sub>2</sub>, ο οποίος ήταν ανάμεσα σε αυτούς που παρουσίασαν βέλτιστα αποτελέσματα, μελετήθηκε στους 710 °C (Σχ. 5). Βρέθηκε ότι η  $X_{C3H8}$  κυμαινόταν στο εύρος 52-57% κατά τη διάρκεια των πρώτων 25h αντίδρασης, ενώ αυξήθηκε σταδιακά σε 66.5% στις 32h (Σχ.5a). Από την άλλη πλευρά, το  $Y_{C3H6}$  ήταν σταθερό καθ' όλη τη διάρκεια του πειράματος λαμβάνοντας τιμές στο εύρος 17-19% (Σχ.5a). Οι εκλεκτικότητες ως προς τα προϊόντα της αντίδρασης παρέμειναν σταθερές για τις πρώτες 25h (Σχ.5b). Ωστόσο, παρατηρήθηκε μια μικρή και προοδευτική αύξηση των  $S_{C2H4}$  και  $S_{CH4}$  μετά από 25h, με παράλληλη μείωση της  $S_{C3H6}$ , φανερώνοντας ότι οι ανεπιθύμητες αντιδράσεις διάσπασης ή υδρογονόλυσης του  $C_3H_8$  ενισχύονται μετά από παρατεταμένη αλληλεπίδραση του καταλύτη με το μίγμα της αντίδρασης. Γενικά, ο καταλύτης  $Ga_2O_3$ -TiO<sub>2</sub> εμφάνισε ικανοποιητική σταθερότητα με το χρόνο, υποδηλώνοντας ότι αποτελεί ένα υποσχόμενο υλικό για την αντίδραση ODP-CO<sub>2</sub>.



**Σχήμα 5**: Μελέτη της σταθερότητας του καταλύτη 10%Ga<sub>2</sub>O<sub>3</sub>-TiO<sub>2</sub> στους 710 °C για την αντίδραση ODP-CO<sub>2</sub>. (a) Μετατροπή C<sub>3</sub>H<sub>8</sub> και απόδοση ως προς C<sub>3</sub>H<sub>6</sub> και (b) εκλεκτικότητες ως προς τα προϊόντα της αντίδρασης συναρτήσει του χρόνου αντίδρασης.

Ο προσδιορισμός των ενδιάμεσων προϊόντων της αντίδρασης που σχηματίζονται στην επιφάνεια του καταλύτη μελετήθηκε πραγματοποιώντας πειράματα *in-situ* DRIFTS χρησιμοποιώντας σύσταση τροφοδοσίας αποτελούμενη από 1% C<sub>3</sub>H<sub>8</sub> + 5% CO<sub>2</sub> (σε He). Στην περίπτωση του σκέτου TiO<sub>2</sub> το φάσμα στους 25 °C χαρακτηρίζεται από τρεις αρνητικές κορυφές (3718, 3677 και 3611 cm<sup>-1</sup>) που αποδίδονται σε επιφανειακές ομάδες OH που προϋπάρχουν στην επιφάνεια του TiO<sub>2</sub> και αρκετές κορυφές σε κυματαριθμούς < 1700 cm<sup>-1</sup> που οφείλονται σε καρβοξυλικά, διττανθρακικά και διδοντικά ανθρακικά είδη. Επίσης, ανιχνεύτηκαν κορυφές στην περιοχή ν(C-H) (2980-2873 cm<sup>-1</sup>), οι οποίες αποδίδονται σε διαφορετικές δονήσεις του προπανίου ή/και των παραγώγων του (είδη CH<sub>x</sub>)<sup>[3]</sup>. Οι περισσότερες από τις κορυφές που ανιχνεύθηκαν εξαφανίζονται από τα φάσματα που συλλέχθηκαν πάνω από τους 450 °C. Ποιοτικά όμοια αποτελέσματα ελήφθησαν και για τα σύνθετα οξείδια μετάλλων με τη διαφορά ότι η σχετική ένταση των κορυφών σε κυματαριθμούς <1700 cm<sup>-1</sup> βρέθηκε υψηλότερη σε σχέση με το σκέτο TiO<sub>2</sub>, πιθανότατα λόγω της αυξημένης επιφανειακής βασικότητας.

## ΕΥΧΑΡΙΣΤΙΕΣ

ΕΛΙΔΕΚ Το ερευνητικό έργο υποστηρίχθηκε από το Ελληνικό Ίδρυμα Έρευνας και Καινοτομίας (ΕΛ.ΙΔ.Ε.Κ) στο πλαίσιο της Δράσης «2<sup>η</sup> Προκήρυξη ερευνητικών έργων ΕΛ.ΙΔ.Ε.Κ για την ενίσχυση των μελών ΔΕΠ και Ερευνητών/τριών» (Αριθμός Έργου: 3367).

#### ΒΙΒΛΙΟΓΡΑΦΙΑ

[1] Wang Z., He Z., Li L., Yang S., He M., Sun Y., Wang K., Chen J., Liu Z. (2022). Rare Met., 41(7), 2129-2152.

[2] Atanga, M.A., Rezaei, M., Jawad, A., Fitch, M., Rownaghi, A.A. (2018). Appl Catal B., 220, 429–445.

[3] Florou, A., Bampos, G., Natsi, P.D., Kokka, A., Panagiotopoulou, P. (2024). Nanomaterials, 14 (1), 86.

[4] M. Jacquemin, A. Beuls, P. Ruiz, Catal. Today 157 (2010) 462-466.