DEMONSTRATING CO₂ CAPTURE AND IN SITU UTILIZATION TOWARD SYNGAS PRODUCTION IN A CARBONATE LOOPING PROCESS COUPLED WITH DRY CH₄ REFORMING

T. Papalas^{1,2}, <u>A.N. Antzaras</u>^{1,*}, D. Lypiridis¹, E. Trimpos¹, V. Zaspalis^{1,3}, A.A. Lemonidou^{1,3} ¹Department of Chemical Engineering, Aristotle University of Thessaloniki, Thessaloniki, Greece ²Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK ³Centre for Research & Technology Hellas (CERTH), Thermi, Greece

(*aantzara@cheng.auth.gr)

ABSTRACT

Combining CaCO₃ calcination with dry reforming of CH₄ in a single, reactive separation step can bring several benefits to the incumbent calcium looping process, by enabling operation at milder temperatures and simultaneous production of syngas. This work provides the experimental proofof-concept of the intensified calcium looping process over a bifunctional material that combines both CO₂ capture and reforming activities. Coupling CaCO₃ calcination with dry CH₄ reforming was demonstrated in a lab-scale unit equipped with a fluidized bed reactor, while a parametric evaluation for the integrated calcination step was performed, by varying main operating conditions. Applying a CH₄ flow enabled rapid CaCO₃ decomposition even at low temperatures (625-750 °C) compared to inert flow, since the *in-situ* CO₂ consumption enhanced the calcination driving force. At 700 °C syngas production with a stable H₂/CO ratio close to 1 was achieved, until the complete calcination of the material. The *in-situ* consumption of the released CO₂ enabled complete calcination even at 625 °C, while leading up to 80% CO₂ utilization.

KEYWORDS: Calcium looping; Integrated CO₂ capture and utilization, CH₄ dry reforming, Bifunctional material, Syngas production

INTRODUCTION

Extensive use of fossil fuels has led to increased CO₂ emissions, with energy intensive industries and large power plants contributing to more than 60% of the global emissions ^[1]. This has led to CO₂ concentrations far above pre-industrial levels, which is considered the main contributing factor to global warming. In this context, it is necessary to reduce the CO₂ emissions and mitigate their negative effect. At this direction, research efforts are focused on developing processes for CO₂ capture from industrial flue gas but also as a means for intensification of thermodynamically limited processes such as steam methane reforming ^[2-4]. Calcium Looping (CaL) is a promising CO₂ capture scheme based on the carbonation of CaO at temperatures ranging between 600-700 °C and the subsequent calcination of the formed CaCO₃ at higher temperatures (\geq 900 °C), to release the captured CO₂^[5]. The main challenges of this process concern the harsh operating conditions and energy demand of the periodic calcination stage. Coupling CaL with direct utilization of the released CO₂ has the potential of mediating the operating conditions ^[6-8], which can be achieved by using a reactive gas feedstock, such as CH₄, in the calcination stage ^[9,10]. The calcination-released CO₂ can be converted to syngas via the dry reforming of CH₄ (DRM), while the in-situ utilization of CO₂ can intensify the calcination stage and enable its conduction at lower temperatures (650-700 °C), according to Le Chatelier's principle. This approach contributes to the mitigation of CO₂ emissions, by in-situ upcycling CO₂ to generate syngas, an important building block used for a broad range of chemicals and fuels.

Keystone for the integration of calcium looping with DRM is the development of bifunctional materials with high CO₂ capture capacity and catalytic activity for dry reforming. This study investigated a candidate bifunctional material for providing the experimental proof of concept of the

intensified process, combined with a detailed parametric analysis of the main operating conditions.

EXPERIMENTAL

Material synthesis

A NiO/CaO-based bifunctional material (BFM) with 10wt% NiO, 60wt% CaO and 30wt% CaZrO₃ nominal composition was synthesized via a sol-gel auto-combustion method ^[11]. The procedure comprised of mixing the precursors and the combustion agent (citric acid) in distilled water, followed by water evaporation. The formed gel was auto combusted at 300 °C in a furnace and the final powder was calcined under air flow for 1.5 h at 850 °C. The developed BFM was denoted Ca₆₀Ni₁₀Zr₃₀.

Experimental proof-of-concept in fixed & fluid bed reactor

Coupling CaCO₃ calcination and CH₄ dry reforming for syngas generation was experimentally proven over the developed Ni/CaO material in a lab-scale unit with fixed or fluidized bed configuration. The BFM was initially exposed under pure Ar flow from 25 to 800 °C to release CO₂ and H₂O captured from the atmosphere. After cooling the reactor to 650 °C, the material was reduced by 10 vol% H₂/Ar and the carbonation step followed by switching to a 10 vol% CO₂/Ar flow. Once the material approached saturation, the feed was switched to a CH₄/Ar flow to conduct the calcination/DRM step.

Parametric analysis

The performance of the BFM was also evaluated by investigating the effect of the main conditions of the intensified calcination/DRM step when conducted in the fluidized bed reactor. The main parameters evaluated include temperature (625-750 °C) and CH₄ concentration in feed (3-10 vol%).

RESULTS AND DISCUSSION

Typical profiles of the reactor's exit stream during a carbonation and calcination/DRM cycle are presented in Figure. 1a & 1b for the experiments performed in the fluidized and fixed bed reactor respectively. During the first stage, as carbonation reaction occurred, only a small fraction of CO2 was detected at the exit of the reactor. The outlet CO_2 partial pressure was stable and close to that predicted by the equilibrium at 650 °C (~1%) for both reactor configurations. Prior reaching saturation in CO₂, the feed was switched to 3 vol% CH₄/Ar to carry out the calcination/DRM stage. As CaCO₃ gradually decomposed, the CO₂ released reacted with CH₄ toward syngas via DRM with a constant H₂/CO ratio close to 1 (Figure 1a). When calcination reached completion, a transitional period followed (2nd regime) where mainly CH₄ decomposition took place and finally when the material's surface was blocked by the solid C, CH₄ cracking was also restrained (3rd regime). These regimes could not be clearly distinguished in the experiment with the fixed bed (Figure 1b), where the reactor profile revealed a transient response of the H₂, CO and CO₂ signals. This is attributed to the shift of the reaction front along the material bed in the axial direction and the alteration over time of the types of reactions occurring at different parts of the bed, as shown in the inset of the figure. Initially, the inlet CH₄ would be consumed in the upper parts of the reactor via the DRM reaction, while the produced H₂ would also react with the CO₂ released from CaCO₃ decomposition in the lower layers via the RWGS reaction. This resulted in the generation of syngas with a H₂/CO ratio lower than 1 during the 1st regime, followed, however, by the gradual increase of the H₂ signal and the decrease of the CO signal (2nd regime). This is attributed to the unavailability of CaCO₃ at the upper parts of the reactor with time, thus enhancing CH₄ decomposition. This in turn results in much less CH₄ available for syngas production at the lower layers, where CaCO₃ would still be present. During the 3rd regime, CH₄ and H₂ followed similar upward and downward trends respectively with the experiment performed in the fluidized bed reactor.

Figure 1. Gas products evolution during the calcium looping coupled with DRM experiments in a fluidized (a) and a fixed bed reactor (b) (carbonation: T=650 °C, , 10vol% CO₂/Ar, calcination/DRM: T=700 °C, , 3vol% CH₄/Ar, W/F = 3 g min/l).

The operating conditions of calcination/DRM stage, which include temperature and CH₄ concentration were investigated experimentally over the Ca₆₀Ni₁₀Zr₃₀ BFM. Temperature comprised a decisive parameter, with lower values enabling high CO₂ conversion (~80% at 625 °C – Table 1) while generating syngas with stable H₂/CO ratio. However, the CaCO₃ decomposition proceeded with slower rate and thus, due to the lower availability of CO₂, part of CH₄ was selectively consumed via its decomposition toward H₂ and C as confirmed by the H₂/CO ratio higher than 1. DRM and CH₄ decomposition also displayed lower reaction rates, as implied by the lower CH₄ conversion (~82%) compared to the higher temperatures, with CH₄ reaching almost complete conversion (~97%) when increasing the temperature to 650 °C. Despite the increase of CH₄ conversion, the *in–situ* CO₂ utilization degree demonstrated the opposite trend with higher temperatures, as the CO₂ partial pressure approached equilibrium partial pressure of calcination reaction for each temperature.

Temperature (°C)	H ₂ /CO ratio (-)	CH ₄ conversion (%)	CO ₂ utilization (%)
625	1.29	81.6	79.8
650	1.20	92.9	76.0
675	1.15	97.0	62.6
700	0.94	97.1	54.0
725	0.78	97.4	42.7
750	0.57	98.0	23.6

Table 1. Effect of temperature during calcination/DRM stage on H_2/CO molar ratio, CH_4 conversion and insitu CO_2 utilization.

Another important operating condition of the integrated calcination stage is the concentration of CH₄ in the gas feedstock. To study the effect of this parameter, isothermal experiments were performed at 650 °C, by varying the CH₄ concentration in the feed (3, 5 and 10%). Figure 2a presents the effect of CH₄ content on CH₄ conversion, *in–situ* CO₂ utilization and H₂/CO ratio of the generated

syngas. Increase of CH₄ concentration resulted to a slightly higher *in–situ* CO₂ utilization efficiency with a simultaneous decrease in CH₄ conversion and increase of H_2/CO ratio.

To better understand the behaviour of the CO₂ utilization efficiency, Figure 2b displays the CaCO₃ decomposition and CH₄ consumption rates as a function of time for the experiments performed at the three different CH₄ concentrations. For comparison, CaCO₃ decomposition rate when conducting calcination under inert Ar flow is also provided. CO₂ released from CaCO₃ decomposition, can either stay adsorbed on active sites and react with activated CH₄ or desorb in the gas phase. Increasing CH₄ in the gas feed enables a higher consumption rate of CO₂ available on active sites toward syngas production. However, the higher CH₄ inlet content and thus higher syngas flow increase the total volumetric flow and thus decrease the CO₂ partial pressure. This promotes the desorption rate of CO₂ in the gas phase in order to reach the CO₂ equilibrium partial pressure. Both consumption and desorption aspects enhance the driving force of CaCO₃ decomposition, significantly reducing the duration of the calcination/DRM stage. The higher in situ CO₂ utilization degree with increasing CH₄ concentration indicates that the increase of the consumption rate is higher than the increase of desorption rate.

Figure 2. CH_4 conversion, in-situ CO_2 utilization, H_2/CO ratio of syngas (a), and $CaCO_3$ decomposition and CH_4 consumption rates over time as a function of CH_4 concentration during the calcination/DRM stage in a fluidized bed reactor (T=650 °C, W/F = 3 g min/I)

The stability of the Ca₆₀Ni₁₀Zr₃₀ BFM was examined for 20 consecutive cycles of carbonation and calcination/DRM. An isothermal experiment at 650 °C and an additional experiment where temperature was alternating between 650 and 700 °C for carbonation and calcination/DRM stage were performed (Figure 3). The material demonstrated high stability in terms of in situ CO₂ utilization and catalytic activity as indicated by the constantly high CH₄ conversion and the stable H₂/CO ratio of the generated syngas. However, the CO₂ capture capacity during carbonation declined by ~22% during the isothermal test, while the loss was even higher (47.0%) with the higher calcination temperature of 700 °C.

Although CH₄ decomposition was inevitable due to the relatively low temperatures (650–700 °C), the formed carbon could be partially gasified from CO₂ during the subsequent carbonation stage, allowing for stable catalytic reforming activity for 20 cycles. Post-reaction characterization with TPO showed that only a small amount of carbon is accumulated on the BFM surface over 20 cycles (0.015-0.025 mol C/mol of CH_{4,in}), with the higher temperature applied (700 versus 650 °C) exhibiting lower C deposition.

Figure 3. CH_4 conversion, in-situ CO_2 utilization, H_2/CO ratio of syngas during the calcination/DRM stage (a), and CO_2 capture capacity and CO produced during the carbonation stage (b) for 20 consecutive cycles in a fluidized bed reactor (carbonation: T=650 °C, 10vol% CO_2/Ar ; calcination/DRM: T=650 or 700 °C, 3vol% CH_4/Ar)

CONCLUSIONS

Combining CaCO₃ calcination with DRM in a single step allows operating at milder temperatures while generating syngas with a H₂/CO ratio close to 1. The beneficial effect was more pronounced in fluidized bed reactor since the uniform mixing of inlet CH₄ and solid particles throughout the material bed contributed to the generation of syngas with stable H₂/CO ratio over time. The in-situ consumption of the released CO₂ enables complete calcination even at 625 °C, while leading up to 80% CO₂ utilization. Increasing the CH₄ concentration in the feed led to higher CO₂ consumption rate compared to CO₂ desorption rate, while the CH₄ conversion and H₂/CO ratio of produced syngas were retained stable for a range of CH₄ concentrations. The bifunctional material showed a stable catalytic activity for 20 consecutive cycles due to the low accumulation of carbon on the surface, since carbon was partially gasified from CO₂ during the subsequent carbonation stage in each cycle.

ACKNOWLEDGEMENTS

The research project was supported by the Hellenic Foundation for Research and Innovation (H.F.R.I.) under the "3rd Call for H.F.R.I. Research Projects to support Post–Doctoral Researchers" (Project Number: 7155).

REFERENCES

- [1] International Energy Agency (IEA). (2015) Energy and Climate Change, *World Energy Outlook Special Report*.
- [2] Antzara A, Heracleous E, Lemonidou A. (2015) *Appl. Energy*, 156, 331–343.
- [3] Antzara AN, Arregi A, Heracleous E, Lemonidou AA. (2018) Chem. Eng. J., 333, 697–721.
- [4] Anthony EJ. (2011) *Greenh. Gas Sci. Technol.*, 1, 36–47.
- [5] Papalas T, Antzaras AN, Lemonidou AA. (2020) *Ind. Eng. Chem. Res.*, 59 9926–9938.
- [6] Kim SM, Abdala PM, Broda M, Hosseini D, Copéret C, Müller C. (2018) ACS Catal., 8, 2815–2823.
- [7] Sun S, Lv Z, Qiao Y, Qin C, Xu S, Wu C. (2021) Carbon Capture Sci. Technol., 1 100001.
- [8] Iliuta I, Iliuta MC. (2020) Int. J. Hydrogen Energy., 45, 18574–18586.
- [9] Tian S, Yan F, Zhang Z, Jiang J. (2019) *Sci. Adv.*, 5, 1–9.
- [10] Papalas T, Lypiridis D, Antzaras AN, Lemonidou AA. (2024) Chem Eng. J., 485, 149866.
- [11] Antzaras AN., Heracleous E, Lemonidou AA. (2021) Catal. Today, 369, 2–11.