ΜΕΛΕΤΗ ΤΗΣ ΑΛΛΗΛΕΠΙΔΡΑΣΗΣ VOC ΚΑΙ Ο2 ΣΕ ΚΑΤΑΛΥΤΕΣ CO3O4: Η ΠΕΡΙΠΤΩΣΗ ΤΗΣ ΠΛΗΡΟΥΣ ΟΞΕΙΔΩΣΗΣ ΤΟΥ ΒΟΥΤΑΝΙΟΥ

<u>Π. Δημητρόπουλος^{1,2}</u>, Μ. Σμυρνιώτη¹, Μ. Βασιλειάδης,³, Γ. Γεωργίου¹, Β. Δρακόπουλος¹, Α. Ευσταθίου³, Θ. Ιωαννίδης^{1*}

¹ Ίδρυμα Τεχνολογίας και Έρευνας, Ινστιτούτο Επιστημών Χημικής Μηχανικής (ITE/IEXMH), Πάτρα, Ελλάδα ²Τμήμα Χημικών Μηχανικών, Πανεπιστήμιο Πατρών, Πάτρα, Ελλάδα

³Τμήμα Χημείας, Πανεπιστήμιο Κύπρου, Λευκωσία, Κύπρος

(*theo@iceht.forth.gr)

ΠΕΡΙΛΗΨΗ

Στην παρούσα εργασία μελετήθηκε η αλληλεπίδραση του βουτανίου με την επιφάνεια καταλυτών Co_3O_4 και η επίδραση της ειδικής επιφάνειας και του μεγέθους κρυσταλλιτών στην οξειδωτική ικανότητα των καταλυτών. Για το λόγο αυτό παρασκευάστηκαν τέσσερις καταλύτες διαφορετικής ειδικής επιφάνειας (2 - 112 m² g⁻¹) οι οποίοι χαρακτηρίστηκαν εκτενώς με τεχνικές φυσικής ρόφησης αζώτου, περίθλαση ακτινών X, φωτοηλεκτρονιακή φασματοσκοπία ακτινών-X (XPS) και θερμοπρογραμματισμένη αναγωγή (H₂-TPR). Στη συνέχεια πραγματοποιήθηκαν πειράματα θερμοπρογραμματισμένης εκρόφησης (TPD) και επιφανειακής αντίδρασης (TPSR) από τα αποτελέσματα των οποίων προέκυψε ότι η καύση βουτανίου μπορεί να πραγματοποιηθεί και υπό απουσία οξυγόνου στο αέριο μείγμα με την συμμετοχή ροφημένου/πλεγματικού οξυγόνου σε υψηλότερες θερμοκρασίες ενώ η επιφάνεια των δειγμάτων. Πειράματα ισοτοπικής εναλλαγής ¹⁸O₂ επιβεβαίωσαν την σημαντική συμμετοχή του πλεγματικού οξυγόνου στην οξείδωση του βουτανίου σε καταλύτες Co₃O₄.

ΛΕΞΕΙΣ ΚΛΕΙΔΙΑ: Co₃O₄, oξείδωση, πτητικές opγανικές ενώσεις, κατάλυση, póφηση.

ΕΙΣΑΓΩΓΗ

Η καταλυτική οξείδωση πτητικών οργανικών ενώσεων (VOCs) είναι μια από τις σημαντικότερες τεχνολογίες ελέγχου των αέριων εκπομπών από στατικές πηγές. Οξείδια μετάλλων μετάπτωσης, όπως το Co₃O₄, είναι ενεργοί καταλύτες οξείδωσης των VOCs αλλά ο μηχανισμός της αντίδρασης δεν έχει μελετηθεί εκτενώς. Είναι γενικά αποδεκτό ότι η αντίδραση πραγματοποιείται μέσω ενός οξειδοαναγωγικού μηχανισμού Mars-van Krevelen, όπου το VOC οξειδώνεται από πλεγματικό οξυγόνο με αποτέλεσμα τη μερική αναγωγή του καταλύτη, ο οποίος στη συνέχεια επανοξειδώνεται από το οξυγόνο της αέριας φάσης. Η παρούσα εργασία αποσκοπεί στη μελέτη της αλληλεπίδρασης του βουτανίου με τα διάφορα είδη οξυγόνου -ροφημένο, πλεγματικό, κενές θέσεις οξυγόνου- της καταλυτικής επιφάνειας του Co₃O₄. Επιπροσθέτως, εξετάστηκε η ύπαρξη δομικής ευαισθησίας της αντίδρασης σε καταλύτες Co₃O₄, μεταβάλλοντας την ειδική επιφάνεια και το μέγεθος των κρυσταλλιτών των δειγμάτων.

ΜΕΘΟΔΟΛΟΓΙΑ

<u>Φυσική ρόφηση Ν</u>2

Η υφή των φρέσκων δειγμάτων προσδιορίστηκε από τις ισόθερμες ρόφησης εκρόφησης αζώτου στους -196°C (Quantachrome Autosorb IQ-C-MP). Πριν την καταγραφή, τα δείγματα είχαν απαερωθεί στους 200°C υπό κενό για 2 ώρες. Τα δεδομένα ρόφησης χρησιμοποιήθηκαν για τον

προσδιορισμό της ειδικής επιφάνειας με την εξίσωση BET (0.06 < P/P₀ < 0.20), τον συνολικό όγκο πόρων σε P/P₀=0.995, και την κατανομή μεγέθους πόρων χρησιμοποιώντας το μοντέλο Barret– Joyner–Halenda (BJH).

<u>Περίθλαση ακτινών Χ (XRD)</u>

Η κρυσταλλική δομή των καταλυτών μελετήθηκε με X-ray περιθλασιόμετρο (Bruker D8 Advance) το οποίο λειτουργούσε στα 40 mA και 40 kV με Ni-φιλτραρισμένη Cu-Ka ακτινοβολία (λ=1,5418Å).Τα μοτίβα XRD λήφθηκαν στο εύρος 20°<2θ<80° με βήμα 0.02° και ταχύτητα 1 s/βήμα.

<u>Φωτοηλεκτρονιακή φασματοσκοπία Ακτινών-Χ (XPS)</u>

Ανάλυση της επιφάνειας των δειγμάτων πραγματοποιήθηκε μέσω φωτοηλεκτρονιακής φασματοσκοπία ακτινών-Χ (XPS) σε θάλαμο υπερυψηλού κενού εξοπλισμένου με SPECS Phoibos 100-1D-DLD ημισφαιρικό αναλυτή ηλεκτρονίων και μη-μονοχρωματική Mg/Al X-ray πηγή διπλής ανόδου. Τα φάσματα XPS καταγράφηκαν χρησιμοποιώντας είτε MgKα στα 1253.6 eV ή AlKα στα 1486.6 eV ενέργεια φωτονίων και 10 eV ενέργεια διέλευσης αναλυτή, με αποτέλεσμα το πλήρες πλάτος στο μισό μέγιστο (FWHM) της κορυφής Ag 3d5/2 να είναι 0.85 eV. Όλα τα δείγματα ήταν σε μορφή σκόνης και συμπιέστηκαν πριν από τις μετρήσεις XPS.

<u>Θερμοπρογραμματισμένη αναγωγή (H₂-TPR)</u>

Πειράματα θερμοπρογραμματισμένης αναγωγής (H₂-TPR) πραγματοποιήθηκαν υπό ροή 3% H₂/He (30 cm³ min⁻¹) από θερμοκρασία δωματίου έως τους 700 °C με ρυθμό θέρμανσης 10 °C min⁻¹. Πριν τα πειράματα, τα δείγματα βάρους 25 mg υποβλήθηκαν σε προκατεργασία στην θερμοκρασία πύρωσης τους υπό ροή αέρα (30 cm³ min⁻¹) για 15 min. Φασματογράφος μάζας (Omnistar GSD 320/Pfeiffer Vacuum) χρησιμοποιήθηκε για την παρακολούθηση των αερίων στην έξοδο του αντιδραστήρα.

<u>Θερμοπρογραμματισμένη εκρόφηση/επιφανειακή αντίδραση (Butane-TPD, Butane-TPSR)</u>

εκρόφηση (TPD) βουτανίου οξυγόνου, Θερμοπρογραμματισμένη και καθώς και θερμοπρογραμματισμένη επιφανειακή αντίδραση (TPSR) βουτανίου πραγματοποιήθηκαν υπό ατμοσφαιρική πίεση σε αντιδραστήρα σταθερής κλίνης. Πριν κάθε πείραμα, το δείγμα (η μάζα του οποίου διαφοροποιούνταν ώστε να υπάρχουν περίπου 1.5 m² καταλυτικής επιφάνειας στον αντιδραστήρα, 90 μm < d < 180 μm) υποβαλλόταν σε προκατεργασία στην θερμοκρασία πύρωσής του υπό ροή αέρα (30 cm³ min⁻¹) για 15 min ακολουθούμενη από ψύξη σε θερμοκρασία δωματίου υπό ροή ηλίου (60 cm³ min⁻¹). Η ρόφηση του βουτανίου γινόταν σε θερμοκρασία δωματίου υπό ροή 0.05%butane/He. Ακολουθούσε ξέπλυμα της επιφάνειας υπό ροή ηλίου και ύστερα TPD υπό ροή He 60 cm³ min⁻¹ ή TPSR υπό ροή $1\%O_2$ /He cm³ min⁻¹ με ρυθμό θέρμανσης 10 °C min⁻¹.

Ισοτοπική εναλλαγή οξυγόνου

Πειράματα ισοτοπικής εναλλαγής οξυγόνου (¹⁸Ο - ¹⁶Ο) πραγματοποιήθηκαν για επιλεγμένο καταλύτη υψηλής ειδικής επιφάνειας με τα εξής βήματα:

He → 800 ppm C₄H₁₀/1% Kr/He (250 °C, 30 min) → He (5 min) → 1% $^{18}O_2/1\%$ Kr/He (250 °C, t)

Πριν κάθε πείραμα ο καταλύτης (20 mg) είχε υποστεί προκατεργασία για 1 ώρα υπό ροή 12.5% O2/He στους 300 °C. Οι ατομικοί αριθμοί (m/z): 18 (H₂O), 28 (C¹⁶O), 30 (C¹⁸O), 32 (¹⁶O₂), 34 (¹⁶O¹⁸O), 36 (¹⁸O₂), 43 (C₄H₁₀), 44 (C¹⁶O₂), 45 (C¹⁶O¹⁸O), 46 (C¹⁸O₂), 84 (Kr) παρακολουθούνται μόνιμα με φασματογράφο μάζας.

ΑΠΟΤΕΛΕΣΜΑΤΑ ΚΑΙ ΣΥΖΗΤΗΣΗ

1. Χαρακτηρισμός καταλυτών Co₃O₄

Για τη μελέτη αυτή παρασκευάστηκαν καταλύτες Co₃O₄ με τέσσερις διαφορετικές μεθόδους οι οποίες φαίνονται στον Πίνακα 1. Το διάγραμμα 1Α δείχνει τα περιθλασιογράμματα των καταλυτών Co₃O₄. Οι κορυφές αντιστοιχούν σε σπινελικό Co₃O₄ (Fd3m space group, PDF: 00-042-1467, φαίνεται στο διάγραμμα 1Α). Η μέση διάμετρος κρυσταλλιτών των δειγμάτων υπολογίστηκε με την εξίσωση Scherrer για κάθε δείγμα και φαίνεται στον πίνακα 1.

Οι ειδικές επιφάνειες υπολογίστηκαν από τις ισόθερμες ρόφησης-εκρόφησης στα 110 m² g⁻¹, 77 m² g⁻¹, 13 m² g⁻¹ and 2 m² g⁻¹ για τα δείγματα Co₃O₄-H, Co₃O₄-P, Co₃O₄-C500, και Co₃O₄-C700 αντίστοιχα. Μέσω του μοντέλου BJH υπολογίστηκε η κατανομή των πόρων και όλοι οι καταλύτες έχουν πόρους κυρίως στην μεσοπορώδη περιοχή (2-5 nm).

Σχήμα 1. (Α) Περιθλασιογράμματα XRD, (Β) καμπύλες Η₂-TPR

Πίνακας 1.	Χαρακτηριστικά	υφής και	δομής των	δειγμάτων	Co_3O_4
·····, -·					

Καταλύτης	Μέθοδος Παρασκευής	S _{BET} (m ² g ⁻¹)	Όγκος Πόρων (cm ³ g ⁻¹)	Διάμετρος Πόρων (nm)	d _{xrd} (nm)	α (Å)
Co ₃ O ₄ -H	Υδροθερμική	110	0.133	1.9	11	8.07
Co ₃ O ₄ -P	Καθίζηση	77	0.153	1.6	14.5	8.07
Co ₃ O ₄ -C500	Συμπλοκοποίηση κιτρικά-νιτρικά	13	0.024	2.5	52	8.08
Co ₃ O ₄ -C700	Καύση	2	0.003	1.6	124	8.09

To σχήμα 1B περιέχει τα προφίλ H₂-TPR όλων των καταλυτών. Τα δείγματα παρουσιάζουν δύο κύριες κορυφές που αντιστοιχούν στην αναγωγή του Co⁺³ σε Co⁺² (περιοχή 295-345°C) και Co⁺² σε Co⁰ (περιοχή 360-440 °C). Η ευκολία αναγωγής ακολουθεί την σειρά Co₃O₄_H > Co₃O₄_P > Co₃O₄_C500 > Co₃O₄_C700, ενώ από το εμβαδό των καμπυλών υπολογίστηκαν οι συνολικές ποσότητες καταναλωμένου H₂ για κάθε δείγμα, οι οποίες είναι μεταξύ 16.4-17.3 mmol g_{cat}⁻¹ και πολύ κοντά στην θεωρητική τιμή (16.6 mmol g_{cat}⁻¹) η οποία προκύπτει από την στοιχειομετρία της *αντίδρασης Co₃O₄ + 4H₂ -> 3Co⁰ + 4H₂O.*

Σχήμα 2. (a) αποσυνελιγμένα φάσματα Co2p XP και (b) d αποσυνελιγμένα φάσματα O1s XP.

Τα φάσματα XPS για τα τροχιακά Co 2p and O 1s φαίνονται στο Σχήμα 2a και 2b αντίστοιχα. Το φάσμα Co 2p αποτελείται από δύο κύριες κορυφές με μέγιστο σε 779.9-780.3 eV και 795.1-795.5 eV με διαφορά 15.1 eV μεταξύ τους που αποδίδονται σε Co 2p_{3/2} και Co 2p_{1/2}, αντίστοιχα. Μετά την αποσυνέλιξη αυτών των κορυφών σε επιμέρους κορυφές των οξειδωτικών καταστάσεων Co²⁺ και Co³⁺ όπως φαίνεται στο σχήμα 2A μπορούν να υπολογιστούν από το εμβαδό τους οι λόγοι Co³⁺/Co²⁺ οι οποίοι φαίνονται στον πίνακα 2. Υπολογίστηκε ότι η επιφανειακή κάλυψη Co³⁺ (δηλαδή ο λόγος Co³⁺/Co³⁺ + Co²⁺) είναι μεταξύ 51-60% για όλους τους καταλύτες. Στα φάσματα O 1s (σχήμα 2b) εμφανίζεται μια κύρια κορυφή στα 529.7 eV, η οποία αποδίδεται σε πλεγματικό οξυγόνο, με έναν ώμο στα 531.2 eV που αποδίδεται σε ροφημένα είδη οξυγόνου. Σε όλα τα δείγματα το πλεγματικό οξυγόνο είναι το κυρίαρχο είδος.

Πίνακας 2. Ενέργειες δέσμευσης των Co 2p, και O 1s κορυφών και λόγοι ειδών κοβαλτίου και οξυγόνου καταλυτών Co₃O₄

	BE (eV)				
Catalyst	Co 2p		O 1s	Co ³⁺ /Co ²⁺	0 /0
	2p _{3/2}	2p _{1/2}			Ulat./Uads.
Co ₃ O ₄ -comb	779.7	794.6	529.7	1.53	4.69
Co₃O₄-hydro	779.9	794.8	529.8	1.07	4.00
Co ₃ O ₄ -prec	779.8	794.8	529.7	1.28	3.67
Co ₃ O ₄ -cit-nit500	779.8	794.8	529.8	1.04	3.52

2.Πειράματα θερμοπρογραμματισμένης εκρόφησης (TPD) /επιφανειακής αντίδρασης (TPSR) και ισοτοπικής εναλλαγής

Στο Σχήμα 3a παρουσιάζονται τα προφίλ εκρόφησης CO₂, κανονικοποιημένα ως προς την ειδική επιφάνεια των δειγμάτων, των πειραμάτων βουτανίου-TPSR. Σε όλα τα δείγματα το βουτάνιο ροφήθηκε αναντίστρεπτα και δεν ανιχνεύτηκαν κορυφές εκρόφησής του. Τα προφίλ εκρόφησης CO₂ όλων των δειγμάτων παρουσιάζουν μία ασύμμετρη ευρεία κορυφή με μέγιστο στους 180-200 °C με τα δείγματα Co₃O₄-C500 και Co₃O₄-C700 να παρουσιάζουν έναν ώμο στους 130-150°C. Δεν υπάρχει κάποια εμφανής συσχέτιση μεταξύ της ειδικής επιφάνειας και της θέσης των κορυφών. Η επιφανειακή συγκέντρωση των ενεργών κέντρων (υπολογισμένη ως η ποσότητα εκροφημένου CO₂ ανά τετραγωνικό μέτρο καταλυτικής επιφάνειας) δεν επηρεάζεται από την αλλαγή στην ειδική επιφάνεια.

Στο σχήμα 3b φαίνονται τα προφίλ εκρόφησης CO₂, κανονικοποιημένα ως προς την ειδική επιφάνεια των δειγμάτων, των πειραμάτων βουτανίου-TPD τα οποία γίνονται υπό ροή ηλίου. Σε όλα τα δείγματα το βουτάνιο ροφήθηκε αναντίστρεπτα και δεν ανιχνεύτηκαν κορυφές εκρόφησης. Το CO₂ ήταν το μόνο προϊόν που ανιχνεύθηκε και δείχνει ότι το βουτάνιο αντέδρασε με επιφανειακό/πλεγματικό οξυγόνο εν απουσία αέριου οξυγόνου και οξειδώθηκε πλήρως. Τα προφίλ εκρόφησης CO₂ όλων των δειγμάτων παρουσιάζουν μία ασύμμετρη ευρεία κορυφή με μέγιστο στους 300-350 °C. Δεν υπάρχει κάποια εμφανής συσχέτιση μεταξύ της ειδικής επιφάνειας και της θέσης των κορυφών. Η επιφανειακή συγκέντρωση των ενεργών κέντρων δεν επηρεάζεται από την αλλαγή στην ειδική επιφάνεια των δειγμάτων.

Σχήμα 3. Προφίλ TPSR (3a) και TPD (3b) CO₂ ύστερα από ρόφηση βουτανίου σε συνθήκες δωματίου σε καταλύτες Co₃O₄ κανονικοποιημένα ως προς την ειδική επιφάνεια.

Πίνακας 3. Εκροφημένες ποσότητες CO₂ ανά μάζα και επιφάνεια καταλύτη Co₃O₄ κατά τη διάρκεια πειραμάτων βουτανίου-TPD και TPSR.

	Desorbed qu	uantities TPD	Desorbed quantities TPSR [µmol g _{cat} -1]		
Catalyst	CO ₂ [µmol g _{cat} -1]	CO ₂ [µmol m _{cat} ⁻²]	CO ₂ [µmol g _{cat} -1]	* CO ₂ [µmol m _{cat} ⁻²]	
Co ₃ O ₄ _H	286	2.6	293	2.67	
Co ₃ O ₄ _P	250	3.25	217	2.82	
Co ₃ O ₄ _C500	42	3.26	38	2.96	
Co ₃ O ₄ _C700	6	2.5	6	2.35	

Συγκρίνοντας τα αποτελέσματα των πειραμάτων TPD και TPSR, φαίνεται ότι οι κορυφές εκρόφησης CO₂ είναι πιο οξείες στην περίπτωση του TPSR και μετατοπισμένες σε χαμηλότερες θερμοκρασίες κατά ~100°C σε σχέση με τις αντίστοιχες κορυφές κατά το TPD. Η μετατόπιση αυτή αποδίδεται στη παρουσία οξυγόνου στο αέριο μείγμα το οποίο αναπληρώνει το οξυγόνο που χρησιμοποιείται από την επιφάνεια του καταλύτη για την οξείδωση του βουτανίου.

<u>Ισοτοπικό πείραμα</u>: He → 800 ppm C₄H₁₀/1% Kr/He (250 °C, 30 min) → He (5 min) → 1% $^{18}O_2/1\%$ Kr/He (250 °C, t)

Σχήμα 4. Προφίλ μεταβατικών ρυθμών (μmol g⁻¹ s⁻¹) (A) κατανάλωσης ¹⁸O₂ (R ¹⁸O₂) και (B) παραγωγής CO₂ (C¹⁶O₂, C¹⁶O¹⁸O, C¹⁸O₂) σε θερμοκρασία T = 250 °C μετά από ρόφηση C₄H₁₀, ξέπλυση με He, και μετά αλλαγή αερίου: He \rightarrow 1% ¹⁸O₂/1% Kr/He (t) σε καταλύτη CO₃O₄-H.

Στο Σχήμα 4Α παρουσιάζεται ο δυναμικός ρυθμός κατανάλωσης ¹⁸O₂ μετά από ρόφηση βουτανίου στην επιφάνεια του καταλύτη Co₃O₄-H. Αυτός ο ρυθμός μπορεί να ερμηνευτεί με τρεις συνιστώσες: (i) τιτλοδότηση ροφημένων ειδών -C_xH_y συσσωρευμένων στην επιφάνεια κατά την ρόφηση C₄H₁₀ για 30 min στους 250°C, (ii) οξυγόνο που αναπλήρωσε κενές πλεγματικές θέσεις ή (iii) πιθανώς μικρή ποσότητα οξυγόνου που αντικατέστησε πλεγματικό οξυγόνο που δεν είχε αλληλεπιδράσει με βουτάνιο κατά την ρόφηση. Στο σχήμα 4Β παρουσιάζονται οι ρυθμοί παραγωγής CO₂. Ιδιαίτερης σημασίας είναι η παραγωγή μεγάλης σχετικά ποσότητας C¹⁶O₂ και C¹⁶O¹⁸O που δηλώνει την σημαντική συμμετοχή του πλεγματικού οξυγόνου στην καύση του βουτανίου. Η μακριές "ουρές" που παρατηρούνται στους ρυθμούς αυτούς οι οποίες ίσως σχετίζονται με την αργή διάχυση πλεγματικού οξυγόνου που καταλύτη.

ΕΥΧΑΡΙΣΤΙΕΣ

Η παρούσα εργασία υλοποιήθηκε στο ερευνητικό έργο VOCAT το οποίο υποστηρίχθηκε από το Ελληνικό Ίδρυμα Έρευνας και Καινοτομίας (ΕΛ.ΙΔ.Ε.Κ.) στο πλαίσιο της «1ης Πρόσκλησης για Ερευνητικά Προγράμματα ΕΛ.ΙΔ.Ε.Κ. για την υποστήριξη μελών ΔΕΠ και ερευνητών και την προμήθεια ερευνητικού εξοπλισμού υψηλού κόστους» (Κωδικός έργου: HFRI-FM17-1876).